BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 9545274)

  • 21. Design and synthesis of non-peptide Ras CAAX mimetics as potent farnesyltransferase inhibitors.
    Qian Y; Vogt A; Sebti SM; Hamilton AD
    J Med Chem; 1996 Jan; 39(1):217-23. PubMed ID: 8568811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted reengineering of protein geranylgeranyltransferase type I selectivity functionally implicates active-site residues in protein-substrate recognition.
    Gangopadhyay SA; Losito EL; Hougland JL
    Biochemistry; 2014 Jan; 53(2):434-46. PubMed ID: 24344934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upstream polybasic region in peptides enhances dual specificity for prenylation by both farnesyltransferase and geranylgeranyltransferase type I.
    Hicks KA; Hartman HL; Fierke CA
    Biochemistry; 2005 Nov; 44(46):15325-33. PubMed ID: 16285736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A non-peptide mimetic of Ras-CAAX: selective inhibition of farnesyltransferase and Ras processing.
    Vogt A; Qian Y; Blaskovich MA; Fossum RD; Hamilton AD; Sebti SM
    J Biol Chem; 1995 Jan; 270(2):660-4. PubMed ID: 7822292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-dependent inhibition of protein farnesyltransferase by a benzodiazepine peptide mimetic.
    Roskoski R; Ritchie PA
    Biochemistry; 2001 Aug; 40(31):9329-35. PubMed ID: 11478901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dominant negative farnesyltransferase alpha-subunit inhibits insulin mitogenic effects.
    Solomon CS; Goalstone ML
    Biochem Biophys Res Commun; 2001 Jul; 285(2):161-6. PubMed ID: 11444820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient prenylation by a plant geranylgeranyltransferase-I requires a functional CaaL box motif and a proximal polybasic domain.
    Caldelari D; Sternberg H; Rodríguez-Concepción M; Gruissem W; Yalovsky S
    Plant Physiol; 2001 Aug; 126(4):1416-29. PubMed ID: 11500541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comprehensive in vivo screen of yeast farnesyltransferase activity reveals broad reactivity across a majority of CXXX sequences.
    Kim JH; Hildebrandt ER; Sarkar A; Yeung W; Waldon RA; Kannan N; Schmidt WK
    G3 (Bethesda); 2023 Jul; 13(7):. PubMed ID: 37119806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate.
    Long SB; Casey PJ; Beese LS
    Biochemistry; 1998 Jul; 37(27):9612-8. PubMed ID: 9657673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Farnesylation and proteolysis are sequential, but distinct steps in the CaaX box modification pathway.
    Farh L; Mitchell DA; Deschenes RJ
    Arch Biochem Biophys; 1995 Apr; 318(1):113-21. PubMed ID: 7726551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lysine beta311 of protein geranylgeranyltransferase type I partially replaces magnesium.
    Hartman HL; Bowers KE; Fierke CA
    J Biol Chem; 2004 Jul; 279(29):30546-53. PubMed ID: 15131129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic studies of protein farnesyltransferase mutants establish active substrate conformation.
    Pickett JS; Bowers KE; Hartman HL; Fu HW; Embry AC; Casey PJ; Fierke CA
    Biochemistry; 2003 Aug; 42(32):9741-8. PubMed ID: 12911316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expansion of protein farnesyltransferase specificity using "tunable" active site interactions: development of bioengineered prenylation pathways.
    Hougland JL; Gangopadhyay SA; Fierke CA
    J Biol Chem; 2012 Nov; 287(45):38090-100. PubMed ID: 22992747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CDC43 and RAM2 encode the polypeptide subunits of a yeast type I protein geranylgeranyltransferase.
    Mayer ML; Caplin BE; Marshall MS
    J Biol Chem; 1992 Oct; 267(29):20589-93. PubMed ID: 1400380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities.
    Hougland JL; Hicks KA; Hartman HL; Kelly RA; Watt TJ; Fierke CA
    J Mol Biol; 2010 Jan; 395(1):176-90. PubMed ID: 19878682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. cDNA cloning and expression of rat and human protein geranylgeranyltransferase type-I.
    Zhang FL; Diehl RE; Kohl NE; Gibbs JB; Giros B; Casey PJ; Omer CA
    J Biol Chem; 1994 Feb; 269(5):3175-80. PubMed ID: 8106351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The chaperone SmgGDS-607 has a dual role, both activating and inhibiting farnesylation of small GTPases.
    García-Torres D; Fierke CA
    J Biol Chem; 2019 Aug; 294(31):11793-11804. PubMed ID: 31197034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inactivation of farnesyltransferase and geranylgeranyltransferase I by caspase-3: cleavage of the common alpha subunit during apoptosis.
    Kim KW; Chung HH; Chung CW; Kim IK; Miura M; Wang S; Zhu H; Moon KD; Rha GB; Park JH; Jo DG; Woo HN; Song YH; Kim BJ; Yuan J; Jung YK
    Oncogene; 2001 Jan; 20(3):358-66. PubMed ID: 11313965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insulin signals to prenyltransferases via the Shc branch of intracellular signaling.
    Goalstone ML; Leitner JW; Berhanu P; Sharma PM; Olefsky JM; Draznin B
    J Biol Chem; 2001 Apr; 276(16):12805-12. PubMed ID: 11278505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Geranylgeranyltransferase I of Candida albicans: null mutants or enzyme inhibitors produce unexpected phenotypes.
    Kelly R; Card D; Register E; Mazur P; Kelly T; Tanaka KI; Onishi J; Williamson JM; Fan H; Satoh T; Kurtz M
    J Bacteriol; 2000 Feb; 182(3):704-13. PubMed ID: 10633104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.