These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 9545288)
1. The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II. Ho CK; Sriskanda V; McCracken S; Bentley D; Schwer B; Shuman S J Biol Chem; 1998 Apr; 273(16):9577-85. PubMed ID: 9545288 [TBL] [Abstract][Full Text] [Related]
2. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes. Ho CK; Martins A; Shuman S J Virol; 2000 Jun; 74(12):5486-94. PubMed ID: 10823853 [TBL] [Abstract][Full Text] [Related]
3. Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus. Ho CK; Schwer B; Shuman S Mol Cell Biol; 1998 Sep; 18(9):5189-98. PubMed ID: 9710603 [TBL] [Abstract][Full Text] [Related]
4. The length, phosphorylation state, and primary structure of the RNA polymerase II carboxyl-terminal domain dictate interactions with mRNA capping enzymes. Pei Y; Hausmann S; Ho CK; Schwer B; Shuman S J Biol Chem; 2001 Jul; 276(30):28075-82. PubMed ID: 11387325 [TBL] [Abstract][Full Text] [Related]
5. An essential function of Saccharomyces cerevisiae RNA triphosphatase Cet1 is to stabilize RNA guanylyltransferase Ceg1 against thermal inactivation. Hausmann S; Ho CK; Schwer B; Shuman S J Biol Chem; 2001 Sep; 276(39):36116-24. PubMed ID: 11463793 [TBL] [Abstract][Full Text] [Related]
6. An essential surface motif (WAQKW) of yeast RNA triphosphatase mediates formation of the mRNA capping enzyme complex with RNA guanylyltransferase. Ho CK; Lehman K; Shuman S Nucleic Acids Res; 1999 Dec; 27(24):4671-8. PubMed ID: 10572165 [TBL] [Abstract][Full Text] [Related]
7. The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo. Takase Y; Takagi T; Komarnitsky PB; Buratowski S Mol Cell Biol; 2000 Dec; 20(24):9307-16. PubMed ID: 11094081 [TBL] [Abstract][Full Text] [Related]
8. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Yue Z; Maldonado E; Pillutla R; Cho H; Reinberg D; Shatkin AJ Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12898-903. PubMed ID: 9371772 [TBL] [Abstract][Full Text] [Related]
9. The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II. Bharati AP; Singh N; Kumar V; Kashif M; Singh AK; Singh P; Singh SK; Siddiqi MI; Tripathi T; Akhtar MS Sci Rep; 2016 Aug; 6():31294. PubMed ID: 27503426 [TBL] [Abstract][Full Text] [Related]
10. Structural insights to how mammalian capping enzyme reads the CTD code. Ghosh A; Shuman S; Lima CD Mol Cell; 2011 Jul; 43(2):299-310. PubMed ID: 21683636 [TBL] [Abstract][Full Text] [Related]
11. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Fabrega C; Shen V; Shuman S; Lima CD Mol Cell; 2003 Jun; 11(6):1549-61. PubMed ID: 12820968 [TBL] [Abstract][Full Text] [Related]
12. Mutational analysis of the RNA triphosphatase component of vaccinia virus mRNA capping enzyme. Yu L; Shuman S J Virol; 1996 Sep; 70(9):6162-8. PubMed ID: 8709242 [TBL] [Abstract][Full Text] [Related]
13. Allosteric interactions between capping enzyme subunits and the RNA polymerase II carboxy-terminal domain. Cho EJ; Rodriguez CR; Takagi T; Buratowski S Genes Dev; 1998 Nov; 12(22):3482-7. PubMed ID: 9832501 [TBL] [Abstract][Full Text] [Related]
14. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Ho CK; Shuman S Mol Cell; 1999 Mar; 3(3):405-11. PubMed ID: 10198643 [TBL] [Abstract][Full Text] [Related]
15. A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates self-association and interaction with the guanylyltransferase component of the mRNA capping apparatus. Lehman K; Schwer B; Ho CK; Rouzankina I; Shuman S J Biol Chem; 1999 Aug; 274(32):22668-78. PubMed ID: 10428848 [TBL] [Abstract][Full Text] [Related]
16. Localization and in vitro mutagenesis of the active site in the Saccharomyces cerevisiae mRNA capping enzyme. Shibagaki Y; Gotoh H; Kato M; Mizumoto K J Biochem; 1995 Dec; 118(6):1303-9. PubMed ID: 8720151 [TBL] [Abstract][Full Text] [Related]
17. HIV-1 Tat protein interacts with mammalian capping enzyme and stimulates capping of TAR RNA. Chiu YL; Coronel E; Ho CK; Shuman S; Rana TM J Biol Chem; 2001 Apr; 276(16):12959-66. PubMed ID: 11278368 [TBL] [Abstract][Full Text] [Related]
18. Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5. Pei Y; Shuman S J Biol Chem; 2002 May; 277(22):19639-48. PubMed ID: 11893740 [TBL] [Abstract][Full Text] [Related]
19. Mutational analysis of yeast mRNA capping enzyme. Schwer B; Shuman S Proc Natl Acad Sci U S A; 1994 May; 91(10):4328-32. PubMed ID: 8183907 [TBL] [Abstract][Full Text] [Related]
20. 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. McCracken S; Fong N; Rosonina E; Yankulov K; Brothers G; Siderovski D; Hessel A; Foster S; Shuman S; Bentley DL Genes Dev; 1997 Dec; 11(24):3306-18. PubMed ID: 9407024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]