These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 9545349)
1. Enzymatic processing of uracil glycol, a major oxidative product of DNA cytosine. Purmal AA; Lampman GW; Bond JP; Hatahet Z; Wallace SS J Biol Chem; 1998 Apr; 273(16):10026-35. PubMed ID: 9545349 [TBL] [Abstract][Full Text] [Related]
2. Uracil glycol deoxynucleoside triphosphate is a better substrate for DNA polymerase I Klenow fragment than thymine glycol deoxynucleoside triphosphate. Purmal AA; Bond JP; Lyons BA; Kow YW; Wallace SS Biochemistry; 1998 Jan; 37(1):330-8. PubMed ID: 9425054 [TBL] [Abstract][Full Text] [Related]
3. Major oxidative products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil, exhibit sequence context-dependent mispairing in vitro. Purmal AA; Kow YW; Wallace SS Nucleic Acids Res; 1994 Jan; 22(1):72-8. PubMed ID: 8127657 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of thymine to 5-formyluracil in DNA promotes misincorporation of dGMP and subsequent elongation of a mismatched primer terminus by DNA polymerase. Masaoka A; Terato H; Kobayashi M; Ohyama Y; Ide H J Biol Chem; 2001 May; 276(19):16501-10. PubMed ID: 11278425 [TBL] [Abstract][Full Text] [Related]
5. Comparison of substrate specificities of Escherichia coli endonuclease III and its mouse homologue (mNTH1) using defined oligonucleotide substrates. Asagoshi K; Odawara H; Nakano H; Miyano T; Terato H; Ohyama Y; Seki S; Ide H Biochemistry; 2000 Sep; 39(37):11389-98. PubMed ID: 10985784 [TBL] [Abstract][Full Text] [Related]
6. Base incorporation and extension at a site-specific ethenocytosine by Escherichia coli DNA polymerase I Klenow fragment. Simha D; Yadav D; Rzepka RW; Palejwala VA; Humayun MZ Mutat Res; 1994 Jan; 304(2):265-9. PubMed ID: 7506370 [TBL] [Abstract][Full Text] [Related]
7. Excision of 5,6-dihydroxy-5,6-dihydrothymine, 5,6-dihydrothymine, and 5-hydroxycytosine from defined sequence oligonucleotides by Escherichia coli endonuclease III and Fpg proteins: kinetic and mechanistic aspects. D'Ham C; Romieu A; Jaquinod M; Gasparutto D; Cadet J Biochemistry; 1999 Mar; 38(11):3335-44. PubMed ID: 10079077 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of oxidized cytosine repair by endonuclease III of Escherichia coli. Wang D; Essigmann JM Biochemistry; 1997 Jul; 36(28):8628-33. PubMed ID: 9214309 [TBL] [Abstract][Full Text] [Related]
9. Replication of DNA templates containing 5-formyluracil, a major oxidative lesion of thymine in DNA. Zhang QM; Sugiyama H; Miyabe I; Matsuda S; Saito I; Yonei S Nucleic Acids Res; 1997 Oct; 25(20):3969-73. PubMed ID: 9321644 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic processing of DNA containing tandem dihydrouracil by endonucleases III and VIII. Venkhataraman R; Donald CD; Roy R; You HJ; Doetsch PW; Kow YW Nucleic Acids Res; 2001 Jan; 29(2):407-14. PubMed ID: 11139610 [TBL] [Abstract][Full Text] [Related]
11. Stereoselective excision of thymine glycol from oxidatively damaged DNA. Miller H; Fernandes AS; Zaika E; McTigue MM; Torres MC; Wente M; Iden CR; Grollman AP Nucleic Acids Res; 2004; 32(1):338-45. PubMed ID: 14726482 [TBL] [Abstract][Full Text] [Related]
12. Human DNA polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides. Fischhaber PL; Gerlach VL; Feaver WJ; Hatahet Z; Wallace SS; Friedberg EC J Biol Chem; 2002 Oct; 277(40):37604-11. PubMed ID: 12145297 [TBL] [Abstract][Full Text] [Related]
13. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-. Lowe LG; Guengerich FP Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958 [TBL] [Abstract][Full Text] [Related]
14. Base sequence dependence of in vitro translesional DNA replication past a bulky lesion catalyzed by the exo- Klenow fragment of Pol I. Zhuang P; Kolbanovskiy A; Amin S; Geacintov NE Biochemistry; 2001 Jun; 40(22):6660-9. PubMed ID: 11380261 [TBL] [Abstract][Full Text] [Related]
15. Recognition of formamidopyrimidine by Escherichia coli and mammalian thymine glycol glycosylases. Distinctive paired base effects and biological and mechanistic implications. Asagoshi K; Yamada T; Okada Y; Terato H; Ohyama Y; Seki S; Ide H J Biol Chem; 2000 Aug; 275(32):24781-6. PubMed ID: 10827172 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Parker JB; Bianchet MA; Krosky DJ; Friedman JI; Amzel LM; Stivers JT Nature; 2007 Sep; 449(7161):433-7. PubMed ID: 17704764 [TBL] [Abstract][Full Text] [Related]
17. Template length, sequence context, and 3'-5' exonuclease activity modulate replicative bypass of thymine glycol lesions in vitro. Clark JM; Beardsley GP Biochemistry; 1989 Jan; 28(2):775-9. PubMed ID: 2713344 [TBL] [Abstract][Full Text] [Related]
18. Comparative efficiency of forming m4T.G versus m4T.A base pairs at a unique site by use of Escherichia coli DNA polymerase I (Klenow fragment) and Drosophila melanogaster polymerase alpha-primase complex. Dosanjh MK; Essigmann JM; Goodman MF; Singer B Biochemistry; 1990 May; 29(19):4698-703. PubMed ID: 2115381 [TBL] [Abstract][Full Text] [Related]
19. Uracil in duplex DNA is a substrate for the nucleotide incision repair pathway in human cells. Prorok P; Alili D; Saint-Pierre C; Gasparutto D; Zharkov DO; Ishchenko AA; Tudek B; Saparbaev MK Proc Natl Acad Sci U S A; 2013 Sep; 110(39):E3695-703. PubMed ID: 24023064 [TBL] [Abstract][Full Text] [Related]
20. In vitro DNA synthesis opposite oxazolone and repair of this DNA damage using modified oligonucleotides. Duarte V; Gasparutto D; Jaquinod M; Cadet J Nucleic Acids Res; 2000 Apr; 28(7):1555-63. PubMed ID: 10710422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]