These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9545369)

  • 1. Tandem 5'-GA:GA-3' mismatches account for the high stability of the fold-back structures formed by the centromeric Drosophila dodeca-satellite.
    Ortiz-Lombardía M; Cortés A; Huertas D; Eritja R; Azorín F
    J Mol Biol; 1998 Apr; 277(4):757-62. PubMed ID: 9545369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centromeric dodeca-satellite DNA sequences form fold-back structures.
    Ferrer N; Azorín F; Villasante A; Gutiérrez C; Abad JP
    J Mol Biol; 1995 Jan; 245(1):8-21. PubMed ID: 7823322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadruple intercalated G-6 stack: a possible motif in the fold-back structure of the Drosophila centromeric dodeca-satellite?
    Chou SH; Chin KH
    J Mol Biol; 2001 Nov; 314(1):139-52. PubMed ID: 11724539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysing the contribution of nucleic acids to the structure and properties of centric heterochromatin.
    Cortés A; Huertas D; Marsellach FX; Ferrer-Miralles N; Ortiz-Lombardía M; Fanti L; Pimpinelli S; Piña B; Azorín F
    Genetica; 2003 Mar; 117(2-3):117-25. PubMed ID: 12723691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of DNA duplexes with adjacent G.A mismatches.
    Li Y; Zon G; Wilson WD
    Biochemistry; 1991 Jul; 30(30):7566-72. PubMed ID: 1854755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a C-rich strand fragment of the human centromeric satellite III: a pH-dependent intercalation topology.
    Nonin-Lecomte S; Leroy JL
    J Mol Biol; 2001 Jun; 309(2):491-506. PubMed ID: 11371167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dodeca satellite: a conserved G+C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster.
    Abad JP; Carmena M; Baars S; Saunders RD; Glover DM; Ludeña P; Sentis C; Tyler-Smith C; Villasante A
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4663-7. PubMed ID: 1584802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DDP1, a heterochromatin-associated multi-KH-domain protein of Drosophila melanogaster, interacts specifically with centromeric satellite DNA sequences.
    Cortés A; Azorín F
    Mol Cell Biol; 2000 Jun; 20(11):3860-9. PubMed ID: 10805729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human chromosomal centromere (AATGG)n sequence forms stable structures with unusual base pairs.
    Jaishree TN; Wang AH
    FEBS Lett; 1994 Jun; 347(1):99-103. PubMed ID: 8013671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single G-to-C change causes human centromere TGGAA repeats to fold back into hairpins.
    Zhu L; Chou SH; Reid BR
    Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12159-64. PubMed ID: 8901550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thermal stability of DNA fragments with tandem mismatches at a d(CXYG).d(CY'X'G) site.
    Ke SH; Wartell RM
    Nucleic Acids Res; 1996 Feb; 24(4):707-12. PubMed ID: 8604314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence, solution structure and stability of DNA hairpins stabilized by a GA/CG helix unit.
    Sandusky P; Wooten EW; Kurochkin AV; Kavanaugh T; Mandecki W; Zuiderweg ER
    Nucleic Acids Res; 1995 Nov; 23(22):4717-25. PubMed ID: 8524666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching for a common centromeric structural motif: Drosophila centromeric satellite DNAs show propensity to form telomeric-like unusual DNA structures.
    Abad JP; Villasante A
    Genetica; 2000; 109(1-2):71-5. PubMed ID: 11293798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of an endogenous Drosophila centromere reveals the prevalence of tandemly repeated sequences able to form i-motifs.
    Garavís M; Méndez-Lago M; Gabelica V; Whitehead SL; González C; Villasante A
    Sci Rep; 2015 Aug; 5():13307. PubMed ID: 26289671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repetitive sequence families in Alces alces americana.
    Blake RD; Wang JZ; Beauregard L
    J Mol Evol; 1997 May; 44(5):509-20. PubMed ID: 9115175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DDP1, a single-stranded nucleic acid-binding protein of Drosophila, associates with pericentric heterochromatin and is functionally homologous to the yeast Scp160p, which is involved in the control of cell ploidy.
    Cortés A; Huertas D; Fanti L; Pimpinelli S; Marsellach FX; Piña B; Azorín F
    EMBO J; 1999 Jul; 18(13):3820-33. PubMed ID: 10393197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural rearrangements and insertions of dispersed elements in pericentromeric alpha satellites occur preferably at kinkable DNA sites.
    Mashkova TD; Oparina NY; Lacroix MH; Fedorova LI; G Tumeneva I; Zinovieva OL; Kisselev LL
    J Mol Biol; 2001 Jan; 305(1):33-48. PubMed ID: 11114245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs.
    Evertsz EM; Rippe K; Jovin TM
    Nucleic Acids Res; 1994 Aug; 22(16):3293-303. PubMed ID: 8078763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly conserved repetitive DNA sequences are present at human centromeres.
    Grady DL; Ratliff RL; Robinson DL; McCanlies EC; Meyne J; Moyzis RK
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1695-9. PubMed ID: 1542662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.