BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9545380)

  • 21. Identification of immunogenic polypeptides from a Mycoplasma hyopneumoniae genome library by phage display.
    Kügler J; Nieswandt S; Gerlach GF; Meens J; Schirrmann T; Hust M
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):447-58. PubMed ID: 18636254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SeleX-CS: a new consensus scoring algorithm for hit discovery and lead optimization.
    Bar-Haim S; Aharon A; Ben-Moshe T; Marantz Y; Senderowitz H
    J Chem Inf Model; 2009 Mar; 49(3):623-33. PubMed ID: 19231809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phage display affords peptides that modulate beta-amyloid aggregation.
    Orner BP; Liu L; Murphy RM; Kiessling LL
    J Am Chem Soc; 2006 Sep; 128(36):11882-9. PubMed ID: 16953628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subtractive single-chain antibody (scFv) phage-display: tailoring phage-display for high specificity against function-specific conformations of cell membrane molecules.
    Eisenhardt SU; Schwarz M; Bassler N; Peter K
    Nat Protoc; 2007; 2(12):3063-73. PubMed ID: 18079705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Somatostatin displayed on filamentous phage as a receptor-specific agonist.
    Rousch M; Lutgerink JT; Coote J; de Bruïne A; Arends JW; Hoogenboom HR
    Br J Pharmacol; 1998 Sep; 125(1):5-16. PubMed ID: 9776337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mathematics of SELEX against complex targets.
    Vant-Hull B; Payano-Baez A; Davis RH; Gold L
    J Mol Biol; 1998 May; 278(3):579-97. PubMed ID: 9600840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly efficient selection of phage antibodies mediated by display of antigen as Lpp-OmpA' fusions on live bacteria.
    Benhar I; Azriel R; Nahary L; Shaky S; Berdichevsky Y; Tamarkin A; Wels W
    J Mol Biol; 2000 Aug; 301(4):893-904. PubMed ID: 10966794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A target-unrelated peptide in an M13 phage display library traced to an advantageous mutation in the gene II ribosome-binding site.
    Brammer LA; Bolduc B; Kass JL; Felice KM; Noren CJ; Hall MF
    Anal Biochem; 2008 Feb; 373(1):88-98. PubMed ID: 17976366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal construction of non-immune scFv phage display libraries from mouse bone marrow and spleen established to select specific scFvs efficiently binding to antigen.
    Okamoto T; Mukai Y; Yoshioka Y; Shibata H; Kawamura M; Yamamoto Y; Nakagawa S; Kamada H; Hayakawa T; Mayumi T; Tsutsumi Y
    Biochem Biophys Res Commun; 2004 Oct; 323(2):583-91. PubMed ID: 15369791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of tumor-binding ligands in cancer patients with phage display libraries.
    Krag DN; Shukla GS; Shen GP; Pero S; Ashikaga T; Fuller S; Weaver DL; Burdette-Radoux S; Thomas C
    Cancer Res; 2006 Aug; 66(15):7724-33. PubMed ID: 16885375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selection and initial characterization of novel peptide ligands that bind specifically to human blood outgrowth endothelial cells.
    Veleva AN; Cooper SL; Patterson C
    Biotechnol Bioeng; 2007 Sep; 98(1):306-12. PubMed ID: 17657770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phage display selection of peptides that affect prostate carcinoma cells attachment and invasion.
    Romanov VI; Durand DB; Petrenko VA
    Prostate; 2001 Jun; 47(4):239-51. PubMed ID: 11398171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequential determination of ligands binding to discrete components in heterogeneous mixtures by iterative panning and blocking (IPAB).
    Messmer BT; Benham CJ; Thaler DS
    J Mol Biol; 2000 Feb; 296(3):821-32. PubMed ID: 10677284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring protein-protein interactions with phage display.
    Sidhu SS; Fairbrother WJ; Deshayes K
    Chembiochem; 2003 Jan; 4(1):14-25. PubMed ID: 12512072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lead optimization via high-throughput molecular docking.
    Joseph-McCarthy D; Baber JC; Feyfant E; Thompson DC; Humblet C
    Curr Opin Drug Discov Devel; 2007 May; 10(3):264-74. PubMed ID: 17554852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical simulation of a Campbell-like stochastic delay model for bacteriophage infection.
    Carletti M
    Math Med Biol; 2006 Dec; 23(4):297-310. PubMed ID: 16801387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the effects of permuted input on conformational sampling of drug-like molecules: an evaluation of stochastic proximity embedding.
    Agrafiotis DK; Bandyopadhyay D; Carta G; Knox AJ; Lloyd DG
    Chem Biol Drug Des; 2007 Aug; 70(2):123-33. PubMed ID: 17683373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic selection of phage engineered for receptor-mediated gene transfer to mammalian cells.
    Kassner PD; Burg MA; Baird A; Larocca D
    Biochem Biophys Res Commun; 1999 Nov; 264(3):921-8. PubMed ID: 10544031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Screening of large molecule diversities by phage display.
    Rentero I; Heinis C
    Chimia (Aarau); 2011; 65(11):843-5. PubMed ID: 22289368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of high-complexity combinatorial phage display peptide libraries.
    Noren KA; Noren CJ
    Methods; 2001 Feb; 23(2):169-78. PubMed ID: 11181036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.