BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9545540)

  • 21. Footprinting analysis of BWYV pseudoknot-ribosome complexes.
    Mazauric MH; Leroy JL; Visscher K; Yoshizawa S; Fourmy D
    RNA; 2009 Sep; 15(9):1775-86. PubMed ID: 19625386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-function analysis of the ribosomal frameshifting signal of two human immunodeficiency virus type 1 isolates with increased resistance to viral protease inhibitors.
    Girnary R; King L; Robinson L; Elston R; Brierley I
    J Gen Virol; 2007 Jan; 88(Pt 1):226-235. PubMed ID: 17170455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome.
    Mouzakis KD; Lang AL; Vander Meulen KA; Easterday PD; Butcher SE
    Nucleic Acids Res; 2013 Feb; 41(3):1901-13. PubMed ID: 23248007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proline residues within spacer peptide p1 are important for human immunodeficiency virus type 1 infectivity, protein processing, and genomic RNA dimer stability.
    Hill MK; Shehu-Xhilaga M; Crowe SM; Mak J
    J Virol; 2002 Nov; 76(22):11245-53. PubMed ID: 12388684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif.
    Pallan PS; Marshall WS; Harp J; Jewett FC; Wawrzak Z; Brown BA; Rich A; Egli M
    Biochemistry; 2005 Aug; 44(34):11315-22. PubMed ID: 16114868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The frameshift signal of HIV-1 involves a potential intramolecular triplex RNA structure.
    Dinman JD; Richter S; Plant EP; Taylor RC; Hammell AB; Rana TM
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5331-6. PubMed ID: 11959986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting.
    Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE
    EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of the human immunodeficiency virus frameshift signal in a bacterial cell-free system: influence of an interaction between the ribosome and a stem-loop structure downstream from the slippery site.
    Brunelle MN; Payant C; Lemay G; Brakier-Gingras L
    Nucleic Acids Res; 1999 Dec; 27(24):4783-91. PubMed ID: 10572179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot.
    Su L; Chen L; Egli M; Berger JM; Rich A
    Nat Struct Biol; 1999 Mar; 6(3):285-92. PubMed ID: 10074948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional analysis of the SRV-1 RNA frameshifting pseudoknot.
    Olsthoorn RC; Reumerman R; Hilbers CW; Pleij CW; Heus HA
    Nucleic Acids Res; 2010 Nov; 38(21):7665-72. PubMed ID: 20639537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frameshifting RNA pseudoknots: structure and mechanism.
    Giedroc DP; Cornish PV
    Virus Res; 2009 Feb; 139(2):193-208. PubMed ID: 18621088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human immunodeficiency virus type 1 gag-pol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo.
    Parkin NT; Chamorro M; Varmus HE
    J Virol; 1992 Aug; 66(8):5147-51. PubMed ID: 1321294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of the HIV-1 frameshift signal with the ribosome.
    Mazauric MH; Seol Y; Yoshizawa S; Visscher K; Fourmy D
    Nucleic Acids Res; 2009 Dec; 37(22):7654-64. PubMed ID: 19812214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stem-loop structure of Cocksfoot mottle virus RNA is indispensable for programmed -1 ribosomal frameshifting.
    Tamm T; Suurväli J; Lucchesi J; Olspert A; Truve E
    Virus Res; 2009 Dec; 146(1-2):73-80. PubMed ID: 19748532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficiency of a programmed -1 ribosomal frameshift in the different subtypes of the human immunodeficiency virus type 1 group M.
    Baril M; Dulude D; Gendron K; Lemay G; Brakier-Gingras L
    RNA; 2003 Oct; 9(10):1246-53. PubMed ID: 13130138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components.
    Yang L; Toh DK; Krishna MS; Zhong Z; Liu Y; Wang S; Gong Y; Chen G
    Biochemistry; 2020 Nov; 59(46):4429-4438. PubMed ID: 33166472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential stability of the mRNA secondary structures in the frameshift site of various HIV type 1 viruses.
    Chang SY; Sutthent R; Auewarakul P; Apichartpiyakul C; Essex M; Lee TH
    AIDS Res Hum Retroviruses; 1999 Nov; 15(17):1591-6. PubMed ID: 10580411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Programmed ribosomal frameshifting in decoding the SARS-CoV genome.
    Baranov PV; Henderson CM; Anderson CB; Gesteland RF; Atkins JF; Howard MT
    Virology; 2005 Feb; 332(2):498-510. PubMed ID: 15680415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting.
    Giedroc DP; Theimer CA; Nixon PL
    J Mol Biol; 2000 Apr; 298(2):167-85. PubMed ID: 10764589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.