BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9545540)

  • 61. The sequences of and distance between two cis-acting signals determine the efficiency of ribosomal frameshifting in human immunodeficiency virus type 1 and human T-cell leukemia virus type II in vivo.
    Kollmus H; Honigman A; Panet A; Hauser H
    J Virol; 1994 Sep; 68(9):6087-91. PubMed ID: 8057488
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structural and Functional Characterization of Programmed Ribosomal Frameshift Signals in West Nile Virus Strains Reveals High Structural Plasticity Among cis-Acting RNA Elements.
    Moomau C; Musalgaonkar S; Khan YA; Jones JE; Dinman JD
    J Biol Chem; 2016 Jul; 291(30):15788-95. PubMed ID: 27226636
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Base-pairings within the RNA pseudoknot associated with the simian retrovirus-1 gag-pro frameshift site.
    Du Z; Holland JA; Hansen MR; Giedroc DP; Hoffman DW
    J Mol Biol; 1997 Jul; 270(3):464-70. PubMed ID: 9237911
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Local structural and environmental factors define the efficiency of an RNA pseudoknot involved in programmed ribosomal frameshift process.
    Gupta A; Bansal M
    J Phys Chem B; 2014 Oct; 118(41):11905-20. PubMed ID: 25226454
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ion-RNA interactions in the RNA pseudoknot of a ribosomal frameshifting site: molecular modeling studies.
    Le SY; Chen JH; Pattabiraman N; Maizel JV
    J Biomol Struct Dyn; 1998 Aug; 16(1):1-11. PubMed ID: 9745889
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element.
    Staple DW; Butcher SE
    J Mol Biol; 2005 Jun; 349(5):1011-23. PubMed ID: 15927637
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A basis for new approaches to the chemotherapy of AIDS: novel genes in HIV-1 potentially encode selenoproteins expressed by ribosomal frameshifting and termination suppression.
    Taylor EW; Ramanathan CS; Jalluri RK; Nadimpalli RG
    J Med Chem; 1994 Aug; 37(17):2637-54. PubMed ID: 8064794
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The human immunodeficiency virus type 1 TAR RNA upper stem-loop plays distinct roles in reverse transcription and RNA packaging.
    Harrich D; Hooker CW; Parry E
    J Virol; 2000 Jun; 74(12):5639-46. PubMed ID: 10823871
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The role of RNA pseudoknot stem 1 length in the promotion of efficient -1 ribosomal frameshifting.
    Napthine S; Liphardt J; Bloys A; Routledge S; Brierley I
    J Mol Biol; 1999 May; 288(3):305-20. PubMed ID: 10329144
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An analysis by metabolic labelling of the encephalomyocarditis virus ribosomal frameshifting efficiency and stimulators.
    Ling R; Firth AE
    J Gen Virol; 2017 Aug; 98(8):2100-2105. PubMed ID: 28786807
    [TBL] [Abstract][Full Text] [Related]  

  • 71. RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus.
    Ishimaru D; Plant EP; Sims AC; Yount BL; Roth BM; Eldho NV; Pérez-Alvarado GC; Armbruster DW; Baric RS; Dinman JD; Taylor DR; Hennig M
    Nucleic Acids Res; 2013 Feb; 41(4):2594-608. PubMed ID: 23275571
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA.
    Chamorro M; Parkin N; Varmus HE
    Proc Natl Acad Sci U S A; 1992 Jan; 89(2):713-7. PubMed ID: 1309954
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Untying the FIV frameshifting pseudoknot structure by MS3D.
    Yu ET; Zhang Q; Fabris D
    J Mol Biol; 2005 Jan; 345(1):69-80. PubMed ID: 15567411
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Selection and characterization of small molecules that bind the HIV-1 frameshift site RNA.
    Marcheschi RJ; Mouzakis KD; Butcher SE
    ACS Chem Biol; 2009 Oct; 4(10):844-54. PubMed ID: 19673541
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop.
    Peterson JM; Becker ST; O'Leary CA; Juneja P; Yang Y; Moss WN
    Biochemistry; 2024 May; 63(10):1287-1296. PubMed ID: 38727003
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV.
    Brierley I; Dos Ramos FJ
    Virus Res; 2006 Jul; 119(1):29-42. PubMed ID: 16310880
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Secondary structures and starvation-induced frameshifting.
    Atkinson J; Dodge M; Gallant J
    Mol Microbiol; 1997 Nov; 26(4):747-53. PubMed ID: 9427404
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulated ribosomal frameshifting by an RNA-protein interaction.
    Kollmus H; Hentze MW; Hauser H
    RNA; 1996 Apr; 2(4):316-23. PubMed ID: 8634912
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A -1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA.
    Barry JK; Miller WA
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11133-8. PubMed ID: 12149516
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identification of Hepta- and Octo-Uridine stretches as sole signals for programmed +1 and -1 ribosomal frameshifting during translation of SARS-CoV ORF 3a variants.
    Wang X; Wong SM; Liu DX
    Nucleic Acids Res; 2006; 34(4):1250-60. PubMed ID: 16500894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.