These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9545540)

  • 81. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.
    Mathew SF; Crowe-McAuliffe C; Graves R; Cardno TS; McKinney C; Poole ES; Tate WP
    PLoS One; 2015; 10(3):e0122176. PubMed ID: 25807539
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication.
    Marcheschi RJ; Tonelli M; Kumar A; Butcher SE
    ACS Chem Biol; 2011 Aug; 6(8):857-64. PubMed ID: 21648432
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%.
    Larsen B; Gesteland RF; Atkins JF
    J Mol Biol; 1997 Aug; 271(1):47-60. PubMed ID: 9300054
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Mutational study reveals that tertiary interactions are conserved in ribosomal frameshifting pseudoknots of two luteoviruses.
    Kim YG; Maas S; Wang SC; Rich A
    RNA; 2000 Aug; 6(8):1157-65. PubMed ID: 10943894
    [TBL] [Abstract][Full Text] [Related]  

  • 85. HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems.
    Wilson W; Braddock M; Adams SE; Rathjen PD; Kingsman SM; Kingsman AJ
    Cell; 1988 Dec; 55(6):1159-69. PubMed ID: 3060262
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Regulation of -1 ribosomal frameshifting directed by cocksfoot mottle sobemovirus genome.
    Lucchesi J; Mäkeläinen K; Merits A; Tamm T; Mäkinen K
    Eur J Biochem; 2000 Jun; 267(12):3523-9. PubMed ID: 10848968
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Structure and dynamics of the HIV-1 frameshift element RNA.
    Low JT; Garcia-Miranda P; Mouzakis KD; Gorelick RJ; Butcher SE; Weeks KM
    Biochemistry; 2014 Jul; 53(26):4282-91. PubMed ID: 24926888
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Apical loop-internal loop RNA pseudoknots: a new type of stimulator of -1 translational frameshifting in bacteria.
    Mazauric MH; Licznar P; Prère MF; Canal I; Fayet O
    J Biol Chem; 2008 Jul; 283(29):20421-32. PubMed ID: 18474594
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Prokaryotic and eukaryotic translational machineries respond differently to the frameshifting RNA signal from plant or animal virus.
    Sung D; Kang H
    Virus Res; 2003 Apr; 92(2):165-70. PubMed ID: 12686425
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Evolution of coronavirus frameshifting elements: Competing stem networks explain conservation and variability.
    Yan S; Zhu Q; Hohl J; Dong A; Schlick T
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2221324120. PubMed ID: 37155888
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression.
    Yan S; Zhu Q; Jain S; Schlick T
    Nat Commun; 2022 Jul; 13(1):4284. PubMed ID: 35879278
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshifting pseudoknot.
    Jones CP; Ferré-D'Amaré AR
    RNA; 2022 Feb; 28(2):239-249. PubMed ID: 34845084
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Live-Cell Single RNA Imaging Reveals Bursts of Translational Frameshifting.
    Lyon K; Aguilera LU; Morisaki T; Munsky B; Stasevich TJ
    Mol Cell; 2019 Jul; 75(1):172-183.e9. PubMed ID: 31178355
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Investigating the correlation between Xrn1-resistant RNAs and frameshifter pseudoknots.
    Dilweg IW; Oskam MG; Overbeek S; Olsthoorn RCL
    RNA Biol; 2023 Jan; 20(1):409-418. PubMed ID: 37400999
    [TBL] [Abstract][Full Text] [Related]  

  • 95. High-affinity recognition of HIV-1 frameshift-stimulating RNA alters frameshifting in vitro and interferes with HIV-1 infectivity.
    Ofori LO; Hilimire TA; Bennett RP; Brown NW; Smith HC; Miller BL
    J Med Chem; 2014 Feb; 57(3):723-32. PubMed ID: 24387306
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Strategies for recognition of stem-loop RNA structures by synthetic ligands: application to the HIV-1 frameshift stimulatory sequence.
    Palde PB; Ofori LO; Gareiss PC; Lerea J; Miller BL
    J Med Chem; 2010 Aug; 53(16):6018-27. PubMed ID: 20672840
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Selection of peptides interfering with a ribosomal frameshift in the human immunodeficiency virus type 1.
    Dulude D; Théberge-Julien G; Brakier-Gingras L; Heveker N
    RNA; 2008 May; 14(5):981-91. PubMed ID: 18367719
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function.
    Pekarek L; Zimmer MM; Gribling-Burrer AS; Buck S; Smyth R; Caliskan N
    Nucleic Acids Res; 2023 Jan; 51(2):728-743. PubMed ID: 36537211
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates.
    Hsu CF; Chang KC; Chen YL; Hsieh PS; Lee AI; Tu JY; Chen YT; Wen JD
    Nucleic Acids Res; 2021 Jul; 49(12):6941-6957. PubMed ID: 34161580
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Stimulation of ribosomal frameshifting by antisense LNA.
    Yu CH; Noteborn MH; Olsthoorn RC
    Nucleic Acids Res; 2010 Dec; 38(22):8277-83. PubMed ID: 20693527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.