These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9545596)

  • 41. Lateral diffusion of proteins in the periplasm of Escherichia coli.
    Brass JM; Higgins CF; Foley M; Rugman PA; Birmingham J; Garland PB
    J Bacteriol; 1986 Mar; 165(3):787-95. PubMed ID: 3005237
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystallization, data collection and phasing of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri.
    Santacruz CP; Balan A; Ferreira LC; Barbosa JA
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Mar; 62(Pt 3):289-91. PubMed ID: 16511325
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New family of tungstate-responsive transcriptional regulators in sulfate-reducing bacteria.
    Kazakov AE; Rajeev L; Luning EG; Zane GM; Siddartha K; Rodionov DA; Dubchak I; Arkin AP; Wall JD; Mukhopadhyay A; Novichkov PS
    J Bacteriol; 2013 Oct; 195(19):4466-75. PubMed ID: 23913324
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure of the molybdate/tungstate binding protein mop from Sporomusa ovata.
    Wagner UG; Stupperich E; Kratky C
    Structure; 2000 Nov; 8(11):1127-36. PubMed ID: 11080635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TupA: a tungstate binding protein in the periplasm of Desulfovibrio alaskensis G20.
    Otrelo-Cardoso AR; Nair RR; Correia MA; Rivas MG; Santos-Silva T
    Int J Mol Sci; 2014 Jul; 15(7):11783-98. PubMed ID: 24992597
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial transport of sulfate, molybdate, and related oxyanions.
    Aguilar-Barajas E; Díaz-Pérez C; Ramírez-Díaz MI; Riveros-Rosas H; Cervantes C
    Biometals; 2011 Aug; 24(4):687-707. PubMed ID: 21301930
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Binding of ReO4(-) with an engineered MoO4(2-)-binding protein: towards a new approach in radiopharmaceutical applications.
    Aryal BP; Brugarolas P; He C
    J Biol Inorg Chem; 2012 Jan; 17(1):97-106. PubMed ID: 21861186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The molybdate-binding protein ModA is required for
    Huang Y; Chen J; Jiang Q; Huang N; Ding X; Peng L; Deng X
    Front Microbiol; 2023; 14():1156273. PubMed ID: 37180242
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molybdate uptake by Agrobacterium tumefaciens correlates with the cellular molybdenum cofactor status.
    Hoffmann MC; Ali K; Sonnenschein M; Robrahn L; Strauss D; Narberhaus F; Masepohl B
    Mol Microbiol; 2016 Sep; 101(5):809-22. PubMed ID: 27196733
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two molybdate/tungstate ABC transporters that interact very differently with their substrate binding proteins.
    Vigonsky E; Ovcharenko E; Lewinson O
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5440-5. PubMed ID: 23513215
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new family of transcriptional regulators of tungstoenzymes and molybdate/tungstate transport.
    Rajeev L; Garber ME; Zane GM; Price MN; Dubchak I; Wall JD; Novichkov PS; Mukhopadhyay A; Kazakov AE
    Environ Microbiol; 2019 Feb; 21(2):784-799. PubMed ID: 30536693
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional dissection of the molybdate-responsive transcription regulator, ModE, from Escherichia coli.
    McNicholas PM; Mazzotta MM; Rech SA; Gunsalus RP
    J Bacteriol; 1998 Sep; 180(17):4638-43. PubMed ID: 9721306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molybdenum uptake in Escherichia coli K12.
    Lopez Corcuera G; Bastidas M; Dubourdieu M
    J Gen Microbiol; 1993 Aug; 139(8):1869-75. PubMed ID: 8409926
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli.
    Howard SP; Herrmann C; Stratilo CW; Braun V
    J Bacteriol; 2001 Oct; 183(20):5885-95. PubMed ID: 11566987
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Export of periplasmic galactose-binding protein in Escherichia coli depends on the chaperone SecB.
    Powers EL; Randall LL
    J Bacteriol; 1995 Apr; 177(7):1906-7. PubMed ID: 7896722
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioinformatics analysis and biochemical characterisation of ABC transporter-associated periplasmic substrate-binding proteins ModA and MetQ from Helicobacter pylori strain SS1.
    Rahman MM; Machuca MA; Roujeinikova A
    Biophys Chem; 2021 May; 272():106577. PubMed ID: 33756269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The molybdate binding protein Mop from Haemophilus influenzae--biochemical and thermodynamic characterisation.
    Masters SL; Howlett GJ; Pau RN
    Arch Biochem Biophys; 2005 Jul; 439(1):105-12. PubMed ID: 15946640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tungsten, the surprisingly positively acting heavy metal element for prokaryotes.
    Andreesen JR; Makdessi K
    Ann N Y Acad Sci; 2008 Mar; 1125():215-29. PubMed ID: 18096847
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transport, homeostasis, regulation, and binding of molybdate and Tungstate to proteins.
    Pau RN; Lawson DM
    Met Ions Biol Syst; 2002; 39():31-74. PubMed ID: 11913129
    [No Abstract]   [Full Text] [Related]  

  • 60. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli.
    Santini CL; Ize B; Chanal A; Müller M; Giordano G; Wu LF
    EMBO J; 1998 Jan; 17(1):101-12. PubMed ID: 9427745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.