These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9545596)

  • 61. Molybdate-dependent transcription of hyc and nar operons of Escherichia coli requires MoeA protein and ModE-molybdate.
    Hasona A; Self WT; Ray RM; Shanmugam KT
    FEMS Microbiol Lett; 1998 Dec; 169(1):111-6. PubMed ID: 9851041
    [TBL] [Abstract][Full Text] [Related]  

  • 62. In vitro incorporation of molybdate into demolybdoproteins in Escherichia coli.
    Scott RH; Sperl GT; DeMoss JA
    J Bacteriol; 1979 Feb; 137(2):719-26. PubMed ID: 370097
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Novel growth characteristics and high rates of nitrate reduction of an Escherichia coli strain, LCB2048, that expresses only a periplasmic nitrate reductase.
    Potter LC; Millington PD; Thomas GH; Rothery RA; Giordano G; Cole JA
    FEMS Microbiol Lett; 2000 Apr; 185(1):51-7. PubMed ID: 10731606
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Kinetics and thermodynamics of the binding of forskolin to the galactose-H+ transport protein, GalP, of Escherichia coli.
    Martin GE; Rutherford NG; Henderson PJ; Walmsley AR
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):261-8. PubMed ID: 7755573
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 A resolution.
    Chaudhuri BN; Ko J; Park C; Jones TA; Mowbray SL
    J Mol Biol; 1999 Mar; 286(5):1519-31. PubMed ID: 10064713
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Global gene expression analysis revealed an unsuspected deo operon under the control of molybdate sensor, ModE protein, in Escherichia coli.
    Tao H; Hasona A; Do PM; Ingram LO; Shanmugam KT
    Arch Microbiol; 2005 Dec; 184(4):225-33. PubMed ID: 16205910
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex.
    Hor LI; Shuman HA
    J Mol Biol; 1993 Oct; 233(4):659-70. PubMed ID: 8411172
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesizing Sodium Tungstate and Sodium Molybdate Microcapsules via Bacterial Mineral Excretion.
    Lin PH; Huang YT; Lin FW
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443091
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Efficient bioaccumulation of tungsten by Escherichia coli cells expressing the Sulfitobacter dubius TupBCA system.
    Coimbra C; Branco R; Morais PV
    Syst Appl Microbiol; 2019 Sep; 42(5):126001. PubMed ID: 31326140
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Acquisition and role of molybdate in Pseudomonas aeruginosa.
    Pederick VG; Eijkelkamp BA; Ween MP; Begg SL; Paton JC; McDevitt CA
    Appl Environ Microbiol; 2014 Nov; 80(21):6843-52. PubMed ID: 25172858
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Impact of Chromate on
    Maunders EA; Ngu DHY; Ganio K; Hossain SI; Lim BYJ; Leeming MG; Luo Z; Tan A; Deplazes E; Kobe B; McDevitt CA
    Front Microbiol; 2022; 13():903146. PubMed ID: 35685933
    [TBL] [Abstract][Full Text] [Related]  

  • 72. EPR spectroscopy of MolB2C2-a reveals mechanism of transport for a bacterial type II molybdate importer.
    Rice AJ; Alvarez FJD; Schultz KM; Klug CS; Davidson AL; Pinkett HW
    J Biol Chem; 2013 Jul; 288(29):21228-21235. PubMed ID: 23709218
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A New Mechanism for High-Affinity Uptake of C4-Dicarboxylates in Bacteria Revealed by the Structure of Rhodopseudomonas palustris MatC (RPA3494), a Periplasmic Binding Protein of the Tripartite Tricarboxylate Transporter (TTT) Family.
    Rosa LT; Dix SR; Rafferty JB; Kelly DJ
    J Mol Biol; 2019 Jan; 431(2):351-367. PubMed ID: 30471256
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transduction of envelope stress in Escherichia coli by the Cpx two-component system.
    Raivio TL; Silhavy TJ
    J Bacteriol; 1997 Dec; 179(24):7724-33. PubMed ID: 9401031
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Substrate specificity of the periplasmic dipeptide-binding protein from Escherichia coli: experimental basis for the design of peptide prodrugs.
    Smith MW; Tyreman DR; Payne GM; Marshall NJ; Payne JW
    Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2891-901. PubMed ID: 10537211
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Identification of a new gene, molR, essential for utilization of molybdate by Escherichia coli.
    Lee JH; Wendt JC; Shanmugam KT
    J Bacteriol; 1990 Apr; 172(4):2079-87. PubMed ID: 2156810
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Secretion and degradation of mutant leucine-specific binding protein molecules containing C-terminal deletions.
    Landick R; Duncan JR; Copeland BR; Nazos PM; Oxender DL
    J Cell Biochem; 1984; 24(4):331-44. PubMed ID: 6381513
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Translational control of exported proteins in Escherichia coli.
    Hengge-Aronis R; Boos W
    J Bacteriol; 1986 Aug; 167(2):462-6. PubMed ID: 3015871
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparison of the large-scale periplasmic proteomes of the Escherichia coli K-12 and B strains.
    Han MJ; Kim JY; Kim JA
    J Biosci Bioeng; 2014 Apr; 117(4):437-42. PubMed ID: 24140104
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molybdate-dependent expression of the periplasmic nitrate reductase in Bradyrhizobium japonicum.
    Bonnard N; Tresierra-Ayala A; Bedmar EJ; Delgado MJ
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):127-9. PubMed ID: 15667283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.