These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9545596)

  • 81. A molecular basis for tungstate selectivity in prokaryotic ABC transport systems.
    Bevers LE; Schwarz G; Hagen WR
    J Bacteriol; 2011 Sep; 193(18):4999-5001. PubMed ID: 21784948
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Escherichia [corrected] coli ribose binding protein based bioreporters revisited.
    Reimer A; Yagur-Kroll S; Belkin S; Roy S; van der Meer JR
    Sci Rep; 2014 Jul; 4():5626. PubMed ID: 25005019
    [TBL] [Abstract][Full Text] [Related]  

  • 83. NikA binds heme: a new role for an Escherichia coli periplasmic nickel-binding protein.
    Shepherd M; Heath MD; Poole RK
    Biochemistry; 2007 May; 46(17):5030-7. PubMed ID: 17411076
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fluorescence properties of the three tyrosine residues in the ribose-binding protein.
    Kim D; Park C
    Biochem Biophys Res Commun; 1993 Sep; 195(3):1237-44. PubMed ID: 8216255
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Purification and properties of the sn-glycerol 3-phosphate-binding protein of Escherichia coli.
    Argast M; Boos W
    J Biol Chem; 1979 Nov; 254(21):10931-5. PubMed ID: 387762
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Passive acquisition of ligand by the MopII molbindin from Clostridium pasteurianum: structures of apo and oxyanion-bound forms.
    Schüttelkopf AW; Harrison JA; Boxer DH; Hunter WN
    J Biol Chem; 2002 Apr; 277(17):15013-20. PubMed ID: 11836258
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Sulfate-binding protein dislikes protonated oxyacids. A molecular explanation.
    Jacobson BL; Quiocho FA
    J Mol Biol; 1988 Dec; 204(3):783-7. PubMed ID: 2852259
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Tungstate antagonism of molybdate in Aspergillus niger.
    HIGGINS ES; RICHERT DA; WESTERFELD WW
    Proc Soc Exp Biol Med; 1956 Jul; 92(3):509-11. PubMed ID: 13359449
    [No Abstract]   [Full Text] [Related]  

  • 89. Comparative outcomes of exposing human liver and kidney cell lines to tungstate and molybdate.
    Sachdeva S; Maret W
    Toxicol Mech Methods; 2021 Nov; 31(9):690-698. PubMed ID: 34320920
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Precise Quantification of Molybdate In Vitro by the FRET-Based Nanosensor 'MolyProbe'.
    Oliphant KD; Karger M; Nakanishi Y; Mendel RR
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744816
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A fluorescence-based sensing system for the environmental monitoring of nickel using the nickel binding protein from Escherichia coli.
    Salins LL; Goldsmith ES; Ensor CM; Daunert S
    Anal Bioanal Chem; 2002 Jan; 372(1):174-80. PubMed ID: 11939190
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Transport of molybdate by Clostridium pasteurianum.
    Elliott BB; Mortenson LE
    J Bacteriol; 1975 Dec; 124(3):1295-1301. PubMed ID: 364
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A method to study the effects of chemical and biological reduction of molybdate to molybdenum blue in bacteria.
    Shukor Y; Shamsuddin B; Mohamad O; Ithnin K
    Pak J Biol Sci; 2008 Feb; 11(4):672-5. PubMed ID: 18817148
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Protoplasmic Incompatibility in PODOSPORA ANSERINA: a Possible Function for Incompatibility Genes.
    Boucherie H; Bernet J
    Genetics; 1980 Oct; 96(2):399-411. PubMed ID: 17249066
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The solubility products of some slightly soluble lead salts and the potentiometric titration of molybdate, tungstate, perrhenate and fluoride with use of a lead ion-selective electrode.
    Chao EE; Cheng KL
    Talanta; 1977 Apr; 24(4):247-50. PubMed ID: 18962074
    [TBL] [Abstract][Full Text] [Related]  

  • 96. EFFECT OF TUNGSTATE ON THE UPTAKE AND FUNCTION OF MOLYBDATE IN AZOTOBACTER AGILIS.
    Bulen WA
    J Bacteriol; 1961 Jul; 82(1):130-4. PubMed ID: 16561910
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Molybdate pumping into the molybdenum storage protein via an ATP-powered piercing mechanism.
    Brünle S; Eisinger ML; Poppe J; Mills DJ; Langer JD; Vonck J; Ermler U
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26497-26504. PubMed ID: 31811022
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The loss of culturability by Escherichia coli cells in seawater depends on availability of phosphate ions and phosphate transport systems.
    Gauthier MJ; Flatau GN; Clément RL; Munro PM
    Microb Ecol; 1993 Jul; 26(1):29-35. PubMed ID: 24189986
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Titrimetric estimation of phosphate, molybdate, tungstate and sulphate with lead nitrate solution, using 1,2-naphthoquinone-2-semicarbazone-4-sulphonic acid (NQS-4S) and 1,2-naphthoquinone-2-thiosemicarbazone-4-sulphonic acid (NQTS-4S) as visual indicators.
    Kesavan S; Garg BS; Singh RP
    Talanta; 1977 Jan; 24(1):51-2. PubMed ID: 18962022
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Overexpression of a Designed Mutant Oxyanion Binding Protein ModA/WtpA in
    Jung H; Jiang V; Su Z; Inaba Y; Khoury FF; Banta S
    JACS Au; 2024 Aug; 4(8):2957-2965. PubMed ID: 39211588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.