BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 9545823)

  • 1. [Prospects for gene therapy for chronic granulomatous disease with gp91-phox deficiency].
    Nunoi H; Sugimoto Y; Kanegasaki S
    Rinsho Ketsueki; 1998 Feb; 39(2):132. PubMed ID: 9545823
    [No Abstract]   [Full Text] [Related]  

  • 2. Chronic granulomatous disease: towards gene therapy.
    Thrasher A; Segal A; Casimir C
    Immunodeficiency; 1993; 4(1-4):327-33. PubMed ID: 8167728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Statistical evaluation of chronic granulomatous disease in Japan and basic studies for gene therapy for CGD patients].
    Nunoi H; Ishibashi F
    Rinsho Byori; 1999 Jul; 47(7):658-64. PubMed ID: 10442045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress toward effective gene therapy for chronic granulomatous disease.
    Malech HL; Choi U; Brenner S
    Jpn J Infect Dis; 2004 Oct; 57(5):S27-8. PubMed ID: 15507764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug-selected co-expression of P-glycoprotein and gp91 in vivo from an MDR1-bicistronic retrovirus vector Ha-MDR-IRES-gp91.
    Sugimoto Y; Tsukahara S; Sato S; Suzuki M; Nunoi H; Malech HL; Gottesman MM; Tsuruo T
    J Gene Med; 2003 May; 5(5):366-76. PubMed ID: 12731085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancer-deleted retroviral vectors restore high levels of superoxide generation in a mouse model of CGD.
    Schwickerath O; Brouns G; Thrasher A; Kinnon C; Roes J; Casimir C
    J Gene Med; 2004 Jun; 6(6):603-15. PubMed ID: 15170731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene therapy of chronic granulomatous disease (CGD) by gene transfer into hematopoietic stem cells.
    Zentilin L; Tafuro S; Serra C; Falaschi A; Giacca M
    Ann Ist Super Sanita; 1998; 34(4):447-55. PubMed ID: 10234875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Chronic granulomatous disease].
    Iwata M; Nunoi H
    Ryoikibetsu Shokogun Shirizu; 2000; (32):179-82. PubMed ID: 11212682
    [No Abstract]   [Full Text] [Related]  

  • 9. The expression of full length Gp91-phox protein is associated with reduced amphotropic retroviral production.
    Bellantuono I; Lashford LS; Rafferty JA; Fairbairn LJ
    Haematologica; 2000 May; 85(5):451-7. PubMed ID: 10800158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gamma-glutamylcysteine synthetase-based selection strategy for gene therapy of chronic granulomatous disease and graft-vs.-host disease.
    Rappa G; Anzanello F; Alexeyev M; Fodstad O; Lorico A
    Eur J Haematol; 2007 May; 78(5):440-8. PubMed ID: 17331133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in gene therapy for chronic granulomatous disease.
    Malech HL
    J Infect Dis; 1999 Mar; 179 Suppl 2():S318-25. PubMed ID: 10081502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. American Society of Gene Therapy meeting. Retroviral vectors: a double-edged sword.
    Kaiser J
    Science; 2005 Jun; 308(5729):1735-6. PubMed ID: 15961648
    [No Abstract]   [Full Text] [Related]  

  • 13. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1.
    Ott MG; Schmidt M; Schwarzwaelder K; Stein S; Siler U; Koehl U; Glimm H; Kühlcke K; Schilz A; Kunkel H; Naundorf S; Brinkmann A; Deichmann A; Fischer M; Ball C; Pilz I; Dunbar C; Du Y; Jenkins NA; Copeland NG; Lüthi U; Hassan M; Thrasher AJ; Hoelzer D; von Kalle C; Seger R; Grez M
    Nat Med; 2006 Apr; 12(4):401-9. PubMed ID: 16582916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lineage- and stage-restricted lentiviral vectors for the gene therapy of chronic granulomatous disease.
    Barde I; Laurenti E; Verp S; Wiznerowicz M; Offner S; Viornery A; Galy A; Trumpp A; Trono D
    Gene Ther; 2011 Nov; 18(11):1087-97. PubMed ID: 21544095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgene optimization significantly improves SIN vector titers, gp91phox expression and reconstitution of superoxide production in X-CGD cells.
    Moreno-Carranza B; Gentsch M; Stein S; Schambach A; Santilli G; Rudolf E; Ryser MF; Haria S; Thrasher AJ; Baum C; Brenner S; Grez M
    Gene Ther; 2009 Jan; 16(1):111-8. PubMed ID: 18784749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virulence of catalase-deficient aspergillus nidulans in p47(phox)-/- mice. Implications for fungal pathogenicity and host defense in chronic granulomatous disease.
    Chang YC; Segal BH; Holland SM; Miller GF; Kwon-Chung KJ
    J Clin Invest; 1998 May; 101(9):1843-50. PubMed ID: 9576747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene therapy for chronic granulomatous disease.
    Kume A; Dinauer MC
    J Lab Clin Med; 2000 Feb; 135(2):122-8. PubMed ID: 10695656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH oxidase activity and cytochrome b558 content of human Epstein-Barr-virus-transformed B lymphocytes correlate with expression of genes encoding components of the oxidase system.
    Condino-Neto A; Newburger PE
    Arch Biochem Biophys; 1998 Dec; 360(2):158-64. PubMed ID: 9851826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and biochemical background of chronic granulomatous disease.
    Jurkowska M; Bernatowska E; Bal J
    Arch Immunol Ther Exp (Warsz); 2004; 52(2):113-20. PubMed ID: 15179325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene therapy for chronic granulomatous disease.
    Stein S; Siler U; Ott MG; Seger R; Grez M
    Curr Opin Mol Ther; 2006 Oct; 8(5):415-22. PubMed ID: 17078383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.