BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9546045)

  • 1. Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Henriksson G; Sild V; Szabó IJ; Pettersson G; Johansson G
    Biochim Biophys Acta; 1998 Mar; 1383(1):48-54. PubMed ID: 9546045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition.
    Igarashi K; Samejima M; Eriksson KE
    Eur J Biochem; 1998 Apr; 253(1):101-6. PubMed ID: 9578466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase.
    Desriani ; Ferri S; Sode K
    Biochem Biophys Res Commun; 2010 Jan; 391(2):1246-50. PubMed ID: 20120044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical oxidation of water by a cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Feng J; Himmel ME; Decker SR
    Biotechnol Lett; 2005 Apr; 27(8):555-60. PubMed ID: 15973489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains.
    Henriksson G; Pettersson G; Johansson G; Ruiz A; Uzcategui E
    Eur J Biochem; 1991 Feb; 196(1):101-6. PubMed ID: 2001691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium.
    Bao W; Usha SN; Renganathan V
    Arch Biochem Biophys; 1993 Feb; 300(2):705-13. PubMed ID: 8434950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct 1H NMR evidence for conversion of beta-D-cellobiose to cellobionolactone by cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Higham CW; Gordon-Smith D; Dempsey CE; Wood PM
    FEBS Lett; 1994 Aug; 351(1):128-32. PubMed ID: 8076681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical evidence of self-substrate inhibition as functions regulation for cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Stoica L; Ruzgas T; Gorton L
    Bioelectrochemistry; 2009 Sep; 76(1-2):42-52. PubMed ID: 19640808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of a thermostable cellobiose dehydrogenase from Sporotrichum thermophile.
    Subramaniam SS; Nagalla SR; Renganathan V
    Arch Biochem Biophys; 1999 May; 365(2):223-30. PubMed ID: 10328816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2.
    Kremer SM; Wood PM
    Eur J Biochem; 1992 Apr; 205(1):133-8. PubMed ID: 1555575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous expression of Phanerochaete chrysosporium cellobiose dehydrogenase in Trichoderma reesei.
    Wohlschlager L; Csarman F; Chang H; Fitz E; Seiboth B; Ludwig R
    Microb Cell Fact; 2021 Jan; 20(1):2. PubMed ID: 33407462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triiodide reduction by cellobiose:quinone oxidoreductase of Phanerochaete chrysosporium.
    Bao WJ; Renganathan V
    FEBS Lett; 1991 Feb; 279(1):30-2. PubMed ID: 1847342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor.
    Igarashi K; Verhagen MF; Samejima M; Schülein M; Eriksson KE; Nishino T
    J Biol Chem; 1999 Feb; 274(6):3338-44. PubMed ID: 9920875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the flavin domain residues, His689 and Asn732, in the catalytic mechanism of cellobiose dehydrogenase from phanerochaete chrysosporium.
    Rotsaert FA; Renganathan V; Gold MH
    Biochemistry; 2003 Apr; 42(14):4049-56. PubMed ID: 12680758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Cameron MD; Aust SD
    Biochemistry; 2000 Nov; 39(44):13595-601. PubMed ID: 11063597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1.
    Henriksson G; Salumets A; Divne C; Pettersson G
    Biochem J; 1997 Jun; 324 ( Pt 3)(Pt 3):833-8. PubMed ID: 9210407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of cellobiose dehydrogenase in cellulose-grown cultures of Phanerochaete chrysosporium.
    Igarashi K; Samejima M; Saburi Y; Habu N; Eriksson KE
    Fungal Genet Biol; 1997 Apr; 21(2):214-22. PubMed ID: 9228789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosa.
    Ludwig R; Salamon A; Varga J; Zámocky M; Peterbauer CK; Kulbe KD; Haltrich D
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):213-22. PubMed ID: 14666391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electron transfer--a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporium.
    Stoica L; Ruzgas T; Ludwig R; Haltrich D; Gorton L
    Langmuir; 2006 Dec; 22(25):10801-6. PubMed ID: 17129063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium.
    Li B; Nagalla SR; Renganathan V
    Appl Environ Microbiol; 1996 Apr; 62(4):1329-35. PubMed ID: 8919793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.