These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 9546203)
61. Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Erdélyi M; Michon AM; Guichet A; Glotzer JB; Ephrussi A Nature; 1995 Oct; 377(6549):524-7. PubMed ID: 7566149 [TBL] [Abstract][Full Text] [Related]
62. Ci-Pem-1 localizes to the nucleus and represses somatic gene transcription in the germline of Ciona intestinalis embryos. Shirae-Kurabayashi M; Matsuda K; Nakamura A Development; 2011 Jul; 138(14):2871-81. PubMed ID: 21693510 [TBL] [Abstract][Full Text] [Related]
63. Genetics of nanos localization in Drosophila. Wang C; Dickinson LK; Lehmann R Dev Dyn; 1994 Feb; 199(2):103-15. PubMed ID: 7515724 [TBL] [Abstract][Full Text] [Related]
64. Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Smith JL; Wilson JE; Macdonald PM Cell; 1992 Sep; 70(5):849-59. PubMed ID: 1516136 [TBL] [Abstract][Full Text] [Related]
65. Mitochondrial trafficking through Rhot1 is involved in the aggregation of germinal granule components during primordial germ cell formation in Xenopus embryos. Tada H; Taira Y; Morichika K; Kinoshita T Dev Growth Differ; 2016 Oct; 58(8):641-650. PubMed ID: 27585825 [TBL] [Abstract][Full Text] [Related]
66. Nanos maintains germline stem cell self-renewal by preventing differentiation. Wang Z; Lin H Science; 2004 Mar; 303(5666):2016-9. PubMed ID: 14976263 [TBL] [Abstract][Full Text] [Related]
67. Mislocalization of oskar product in the anterior pole results in ectopic localization of mitochondrial large ribosomal RNA in Drosophila embryos. Kobayashi S; Amikura R; Nakamura A; Saito H; Okada M Dev Biol; 1995 May; 169(1):384-6. PubMed ID: 7750655 [TBL] [Abstract][Full Text] [Related]
70. Conserved germ plasm characteristics across the Danio and Devario lineages. Hansen CL; Chamberlain TJ; Trevena RL; Kurek JE; Pelegri F Genesis; 2021 Oct; 59(10):e23452. PubMed ID: 34617657 [TBL] [Abstract][Full Text] [Related]
71. Germ Plasm Biogenesis--An Oskar-Centric Perspective. Lehmann R Curr Top Dev Biol; 2016; 116():679-707. PubMed ID: 26970648 [TBL] [Abstract][Full Text] [Related]
72. Transcriptomic and functional analysis of the oosome, a unique form of germ plasm in the wasp Nasonia vitripennis. Quan H; Arsala D; Lynch JA BMC Biol; 2019 Oct; 17(1):78. PubMed ID: 31601213 [TBL] [Abstract][Full Text] [Related]
73. Isolation of germline cells from Drosophila embryos by flow cytometry. Shigenobu S; Arita K; Kitadate Y; Noda C; Kobayashi S Dev Growth Differ; 2006 Jan; 48(1):49-57. PubMed ID: 16466393 [TBL] [Abstract][Full Text] [Related]
74. [Molecular and genetic approaches to germ cell formation in Drosophila embryogenesis]. Okada M Seikagaku; 1995 Mar; 67(3):181-9. PubMed ID: 7541441 [No Abstract] [Full Text] [Related]
75. Tudor and its domains: germ cell formation from a Tudor perspective. Thomson T; Lasko P Cell Res; 2005 Apr; 15(4):281-91. PubMed ID: 15857583 [TBL] [Abstract][Full Text] [Related]
76. Spatiotemporal localization of germ plasm RNAs during zebrafish oogenesis. Kosaka K; Kawakami K; Sakamoto H; Inoue K Mech Dev; 2007 Apr; 124(4):279-89. PubMed ID: 17293094 [TBL] [Abstract][Full Text] [Related]
77. Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. DeRenzo C; Reese KJ; Seydoux G Nature; 2003 Aug; 424(6949):685-9. PubMed ID: 12894212 [TBL] [Abstract][Full Text] [Related]
78. C-terminal moiety of Tudor contains its in vivo activity in Drosophila. Anne J PLoS One; 2010 Dec; 5(12):e14378. PubMed ID: 21179416 [TBL] [Abstract][Full Text] [Related]