BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 9546395)

  • 1. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins.
    Weiner JH; Bilous PT; Shaw GM; Lubitz SP; Frost L; Thomas GH; Cole JA; Turner RJ
    Cell; 1998 Apr; 93(1):93-101. PubMed ID: 9546395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a twin-arginine leader-binding protein.
    Oresnik IJ; Ladner CL; Turner RJ
    Mol Microbiol; 2001 Apr; 40(2):323-31. PubMed ID: 11309116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple roles for the twin arginine leader sequence of dimethyl sulfoxide reductase of Escherichia coli.
    Sambasivarao D; Turner RJ; Simala-Grant JL; Shaw G; Hu J; Weiner JH
    J Biol Chem; 2000 Jul; 275(29):22526-31. PubMed ID: 10801884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase.
    Papish AL; Ladner CL; Turner RJ
    J Biol Chem; 2003 Aug; 278(35):32501-6. PubMed ID: 12813051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and expression of the Escherichia coli dimethyl sulfoxide reductase operon.
    Bilous PT; Weiner JH
    J Bacteriol; 1988 Apr; 170(4):1511-8. PubMed ID: 2832366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The torYZ (yecK bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli.
    Gon S; Patte JC; Méjean V; Iobbi-Nivol C
    J Bacteriol; 2000 Oct; 182(20):5779-86. PubMed ID: 11004177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential cytoplasmic domains in the Escherichia coli TatC protein.
    Allen SC; Barrett CM; Ray N; Robinson C
    J Biol Chem; 2002 Mar; 277(12):10362-6. PubMed ID: 11781311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Escherichia coli dimethyl sulfoxide reductase assembly and processing in strains defective for the sec-independent protein translocation system membrane targeting and translocation.
    Sambasivarao D; Dawson HA; Zhang G; Shaw G; Hu J; Weiner JH
    J Biol Chem; 2001 Jun; 276(23):20167-74. PubMed ID: 11389150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.
    McCrindle SL; Kappler U; McEwan AG
    Adv Microb Physiol; 2005; 50():147-98. PubMed ID: 16221580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing.
    Brondijk TH; Nilavongse A; Filenko N; Richardson DJ; Cole JA
    Biochem J; 2004 Apr; 379(Pt 1):47-55. PubMed ID: 14674886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli.
    Tseng CP; Albrecht J; Gunsalus RP
    J Bacteriol; 1996 Feb; 178(4):1094-8. PubMed ID: 8576043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of a molybdopterin synthase sulfurylase (moeB) mutation on Escherichia coli molybdoenzyme maturation.
    Sambasivarao D; Turner RJ; Bilous PT; Rothery RA; Shaw G; Weiner JH
    Biochem Cell Biol; 2002; 80(4):435-43. PubMed ID: 12234097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD.
    Winstone TM; Tran VA; Turner RJ
    Biochemistry; 2013 Oct; 52(43):7532-41. PubMed ID: 24093457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, cloning, sequence analysis and localization of the operon encoding dimethyl sulfoxide/trimethylamine N-oxide reductase from Rhodobacter capsulatus.
    Knäblein J; Mann K; Ehlert S; Fonstein M; Huber R; Schneider F
    J Mol Biol; 1996 Oct; 263(1):40-52. PubMed ID: 8890911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif.
    Buchanan G; Sargent F; Berks BC; Palmer T
    Arch Microbiol; 2001 Dec; 177(1):107-12. PubMed ID: 11797051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hydrophobic core of twin-arginine signal sequences orchestrates specific binding to Tat-pathway related chaperones.
    Shanmugham A; Bakayan A; Völler P; Grosveld J; Lill H; Bollen YJ
    PLoS One; 2012; 7(3):e34159. PubMed ID: 22479549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molybdenum cofactor: a compound in the in vitro activation of both nitrate reductase and trimethylamine-N-oxide reductase activities in Escherichia coli K12.
    Silvestro A; Pommier J; Giordano G
    Biochim Biophys Acta; 1986 Aug; 872(3):243-52. PubMed ID: 3524687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The narL gene product activates the nitrate reductase operon and represses the fumarate reductase and trimethylamine N-oxide reductase operons in Escherichia coli.
    Iuchi S; Lin EC
    Proc Natl Acad Sci U S A; 1987 Jun; 84(11):3901-5. PubMed ID: 3035558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of the DMSO respiratory operon of Rhodobacter capsulatus and its consequences for homologous expression of DMSOR/TMAOR.
    Knäblein J; Dobbek H; Schneider F
    Biol Chem; 1997; 378(3-4):303-8. PubMed ID: 9165085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation, cloning, sequence analysis and X-ray structure of dimethyl sulfoxide/trimethylamine N-oxide reductase from Rhodobacter capsulatus.
    Knäblein J; Dobbek H; Ehlert S; Schneider F
    Biol Chem; 1997; 378(3-4):293-302. PubMed ID: 9165084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.