BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9546602)

  • 1. Steady state changes in mitochondrial electrical potential and proton gradient in perfused liver from rats fed a high fat diet.
    Mollica MP; Iossa S; Liverini G; Soboll S
    Mol Cell Biochem; 1998 Jan; 178(1-2):213-7. PubMed ID: 9546602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of oxygen consumption following addition of lipid substrates in liver and skeletal muscle from rats fed a high-fat diet.
    Mollica MP; Iossa S; Liverini G; Soboll S
    Metabolism; 1999 Oct; 48(10):1230-5. PubMed ID: 10535383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet.
    Iossa S; Mollica MP; Lionetti L; Barletta A; Liverini G
    Int J Obes Relat Metab Disord; 1995 Aug; 19(8):539-43. PubMed ID: 7489023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver.
    Soboll S; Scholz R; Heldt HW
    Eur J Biochem; 1978 Jun; 87(2):377-90. PubMed ID: 668699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of energy metabolism by glucagon and adrenaline in perfused rat liver.
    Soboll S; Scholz R
    FEBS Lett; 1986 Sep; 205(1):109-12. PubMed ID: 3743764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liver mitochondrial properties from the obesity-resistant Lou/C rat.
    Lacraz G; Couturier K; Taleux N; Servais S; Sibille B; Letexier D; Guigas B; Dubouchaud H; Leverve X; Favier R
    Int J Obes (Lond); 2008 Apr; 32(4):629-38. PubMed ID: 18197185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fat balance and hepatic mitochondrial function in response to fat feeding in mature rats.
    Iossa S; Lionetti L; Mollica MP; Barletta A; Liverini G
    Int J Obes Relat Metab Disord; 1999 Nov; 23(11):1122-8. PubMed ID: 10578201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diet effects on membrane phospholipid fatty acids and mitochondrial function in BHE rats.
    Deaver OE; Wander RC; McCusker RH; Berdanier CD
    J Nutr; 1986 Jul; 116(7):1148-55. PubMed ID: 2943879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial metabolism in different thyroid states.
    Soboll S; Horst C; Hummerich H; Schumacher JP; Seitz HJ
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):171-3. PubMed ID: 1731752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of branched-chain alpha-keto acid dehydrogenase complex by exercise: effect of high-fat diet intake.
    Shimomura Y; Suzuki T; Saitoh S; Tasaki Y; Harris RA; Suzuki M
    J Appl Physiol (1985); 1990 Jan; 68(1):161-5. PubMed ID: 2312455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the cannabinoid CB1 antagonist rimonabant on hepatic mitochondrial function in rats fed a high-fat diet.
    Flamment M; Gueguen N; Wetterwald C; Simard G; Malthièry Y; Ducluzeau PH
    Am J Physiol Endocrinol Metab; 2009 Nov; 297(5):E1162-70. PubMed ID: 19724020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of mitochondrial potassium fluxes in controlling the protonmotive force in energized mitochondria.
    Czyz A; Szewczyk A; Nałecz MJ; Wojtczak L
    Biochem Biophys Res Commun; 1995 May; 210(1):98-104. PubMed ID: 7741755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fat intake reverses the beneficial effects of low caloric intake on skeletal muscle mitochondrial H(2)O(2) production.
    Garait B; Couturier K; Servais S; Letexier D; Perrin D; Batandier C; Rouanet JL; Sibille B; Rey B; Leverve X; Favier R
    Free Radic Biol Med; 2005 Nov; 39(9):1249-61. PubMed ID: 16214040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial transmembrane potential and pH gradient during anoxia.
    Andersson BS; Aw TY; Jones DP
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C349-55. PubMed ID: 3565555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of N-Acetylcysteine on Respiratory Enzymes, ADP/ATP Ratio, Glutathione Metabolism, and Nitrosative Stress in the Salivary Gland Mitochondria of Insulin Resistant Rats.
    Zalewska A; Szarmach I; Żendzian-Piotrowska M; Maciejczyk M
    Nutrients; 2020 Feb; 12(2):. PubMed ID: 32059375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of cellular redox potential as measured in a steady-state, cell-free system.
    Burat MK; Burat T; Davis-Van Thienen WI; Davis EJ
    Arch Biochem Biophys; 1984 Nov; 235(1):150-8. PubMed ID: 6238571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular distribution of di- and tricarboxylates and pH gradients in perfused rat liver.
    Soboll S; Elbers R; Scholz R; Heldt HW
    Hoppe Seylers Z Physiol Chem; 1980 Jan; 361(1):69-76. PubMed ID: 7358333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Butyrate impairs energy metabolism in isolated perfused liver of fed rats.
    Beauvieux MC; Tissier P; Gin H; Canioni P; Gallis JL
    J Nutr; 2001 Jul; 131(7):1986-92. PubMed ID: 11435518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of stimulation of respiration by fatty acids in isolated hepatocytes.
    Nobes CD; Hay WW; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12910-5. PubMed ID: 2376580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Berberine reverts hepatic mitochondrial dysfunction in high-fat fed rats: a possible role for SirT3 activation.
    Teodoro JS; Duarte FV; Gomes AP; Varela AT; Peixoto FM; Rolo AP; Palmeira CM
    Mitochondrion; 2013 Nov; 13(6):637-46. PubMed ID: 24041461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.