These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Transient evoked otoacoustic emissions (TEOAEs) in Caucasian and Chinese young adults. Shahnaz N Int J Audiol; 2008 Feb; 47(2):76-83. PubMed ID: 18236238 [TBL] [Abstract][Full Text] [Related]
63. Pressurized transient otoacoustic emissions measured using click and chirp stimuli. Keefe DH; Patrick Feeney M; Hunter LL; Fitzpatrick DF; Sanford CA J Acoust Soc Am; 2018 Jan; 143(1):399. PubMed ID: 29390789 [TBL] [Abstract][Full Text] [Related]
64. The effects on transient evoked otoacoustic emissions following changes in external auditory canal acoustic impedance. Stephen RO; Badham NJ Audiology; 1996; 35(4):180-93. PubMed ID: 8879446 [TBL] [Abstract][Full Text] [Related]
66. Effects of exam procedures on transient evoked otoacoustic emissions (TEOAEs) in neonates. Vohr BR; White KR; Maxon AB J Am Acad Audiol; 1996 Apr; 7(2):77-82. PubMed ID: 8652872 [TBL] [Abstract][Full Text] [Related]
67. Transient otoacoustic emissions and audiogram fine structure in the extended high-frequency region. Alenzi H; Lineton B Int J Audiol; 2021 Dec; 60(12):985-994. PubMed ID: 33779459 [TBL] [Abstract][Full Text] [Related]
68. Lack of association between transiently evoked otoacoustic emission amplitude and experimentation linked-factors (repeated acoustic stimulation, cerebrospinal fluid pressure, supine and sitting positions, alertness level). Froehlich P; Ferber C; Remond J; Jaboulay JM; Morgon A; Duclaux R; Collet L Hear Res; 1994 May; 75(1-2):184-90. PubMed ID: 8071145 [TBL] [Abstract][Full Text] [Related]
69. Reliable identification of click-evoked otoacoustic emissions using signal-processing techniques. Lutman ME Br J Audiol; 1993 Apr; 27(2):103-8. PubMed ID: 8220275 [TBL] [Abstract][Full Text] [Related]
70. Insights into linear and nonlinear cochlear transduction: application of a new system-identification procedure on transient-evoked otoacoustic emissions data. Krishnan G; Chertoff ME J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):770-81. PubMed ID: 9972563 [TBL] [Abstract][Full Text] [Related]
71. Otoacoustic emissions in 28 young adults exposed to amplified music. Mansfield JD; Baghurst PA; Newton VE Br J Audiol; 1999 Aug; 33(4):211-22. PubMed ID: 10509856 [TBL] [Abstract][Full Text] [Related]
72. Effects of hypothermia on cochlear micromechanical properties in humans. Veuillet E; Gartner M; Champsaur G; Neidecker J; Collet L J Neurol Sci; 1997 Jan; 145(1):69-76. PubMed ID: 9073031 [TBL] [Abstract][Full Text] [Related]
73. Otoacoustic Emissions in Children with Long-Term Middle Ear Disease. Sanfins MD; Bertazolli LF; Skarzynski PH; Skarzynska MB; Donadon C; Colella-Santos MF Life (Basel); 2020 Nov; 10(11):. PubMed ID: 33217895 [TBL] [Abstract][Full Text] [Related]
75. Non-linearities of click-evoked otoacoustic emissions and the derived non-linear technique. Grandori F; Ravazzani P Br J Audiol; 1993 Apr; 27(2):97-102. PubMed ID: 8220288 [TBL] [Abstract][Full Text] [Related]
76. A speculation about the parallel ear asymmetries and sex differences in hearing sensitivity and otoacoustic emissions. McFadden D Hear Res; 1993 Aug; 68(2):143-51. PubMed ID: 8407600 [TBL] [Abstract][Full Text] [Related]
77. Detection of hearing losses (HL) via transient-evoked otoacoustic emissions: towards an automatic classification. Zimatore G; Cavagnaro M; Skarzynski PH; Hatzopoulos S Biomed Phys Eng Express; 2022 Aug; 8(5):. PubMed ID: 35724632 [TBL] [Abstract][Full Text] [Related]