These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
59 related articles for article (PubMed ID: 9547749)
1. Measurement of temporal asymmetries of glucose consumption using linear profiles: reproducibility and comparison with visual analysis. Matheja P; Diehl B; Kuwert T; Stodieck SR; Schäfers M; Schäfers K; Schuierer G; Ringelstein EB; Schober O Nuklearmedizin; 1998 Mar; 37(2):43-8. PubMed ID: 9547749 [TBL] [Abstract][Full Text] [Related]
2. PET and SPECT in medically non-refractory complex partial seizures. Temporal asymmetries of glucose consumption, benzodiazepine receptor density, and blood flow. Matheja P; Kuwert T; Stodieck SR; Diehl B; Wolf K; Schuierer G; Ringelstein EB; Schober O Nuklearmedizin; 1998; 37(7):221-6. PubMed ID: 9830611 [TBL] [Abstract][Full Text] [Related]
3. Comparison of ictal SPECT and interictal PET in the presurgical evaluation of temporal lobe epilepsy. Ho SS; Berkovic SF; Berlangieri SU; Newton MR; Egan GF; Tochon-Danguy HJ; McKay WJ Ann Neurol; 1995 Jun; 37(6):738-45. PubMed ID: 7778847 [TBL] [Abstract][Full Text] [Related]
4. Comparison of fluorine-18 deoxyglucose and O-15 water PET in temporal lobe epilepsy. Tatlidil R; Luther S; West A; Jadvar H; Kingman T Acta Neurol Belg; 2000 Dec; 100(4):214-20. PubMed ID: 11233675 [TBL] [Abstract][Full Text] [Related]
6. Postsurgical outcome of patients with uncontrolled complex partial seizures and temporal lobe hypometabolism on 18FDG-positron emission tomography. Delbeke D; Lawrence SK; Abou-Khalil BW; Blumenkopf B; Kessler RM Invest Radiol; 1996 May; 31(5):261-6. PubMed ID: 8724123 [TBL] [Abstract][Full Text] [Related]
7. 18F-labeled 2-deoxy-2-fluoro-D-glucose positron-emission tomography scans for the localization of the epileptogenic foci. Hotta SS Health Technol Assess (Rockv); 1998 Jul; (12):i-vi, 1-17. PubMed ID: 9803323 [TBL] [Abstract][Full Text] [Related]
8. Inter-modality comparisons of seizure focus lateralization in complex partial seizures. Meyer PT; Cortés-Blanco A; Pourdehnad M; Levy-Reis I; Desiderio L; Jang S; Alavi A Eur J Nucl Med; 2001 Oct; 28(10):1529-40. PubMed ID: 11685497 [TBL] [Abstract][Full Text] [Related]
10. Regional brain glucose metabolism in patients with complex partial seizures investigated by intracranial EEG. Sadzot B; Debets RM; Maquet P; van Veelen CW; Salmon E; van Emde Boas W; Velis DN; van Huffelen AC; Franck G Epilepsy Res; 1992 Jul; 12(2):121-9. PubMed ID: 1396538 [TBL] [Abstract][Full Text] [Related]
11. Relationship of seizure frequency to hippocampus volume and metabolism in temporal lobe epilepsy. Spanaki MV; Kopylev L; Liow K; DeCarli C; Fazilat S; Gaillard WD; Theodore WH Epilepsia; 2000 Sep; 41(9):1227-9. PubMed ID: 10999564 [TBL] [Abstract][Full Text] [Related]
12. Interictal metabolism and blood flow are uncoupled in temporal lobe cortex of patients with complex partial epilepsy. Gaillard WD; Fazilat S; White S; Malow B; Sato S; Reeves P; Herscovitch P; Theodore WH Neurology; 1995 Oct; 45(10):1841-7. PubMed ID: 7477979 [TBL] [Abstract][Full Text] [Related]
13. Adult-onset complex partial seizures as the presenting sign in colpocephaly: MRI and PET correlates. Wunderlich G; Schlaug G; Jäncke L; Benecke R; Seitz RJ J Neuroimaging; 1996 Jul; 6(3):192-5. PubMed ID: 8704298 [TBL] [Abstract][Full Text] [Related]
14. Positron emission tomography studies of cerebral glucose metabolism in chronic partial epilepsy. Abou-Khalil BW; Siegel GJ; Sackellares JC; Gilman S; Hichwa R; Marshall R Ann Neurol; 1987 Oct; 22(4):480-6. PubMed ID: 3124709 [TBL] [Abstract][Full Text] [Related]
15. Regional lumped constant differences and asymmetry in fluorine-18-FDG uptake in temporal lobe epilepsy. Reutens DC; Gjedde AH; Meyer E J Nucl Med; 1998 Jan; 39(1):176-80. PubMed ID: 9443758 [TBL] [Abstract][Full Text] [Related]
16. Quantitative estimation of I-123-Iomazenil receptor binding in temporal lobe epilepsies using two SPECT acquisitions--comparison with the regional cerebral blood flow and a compartment model. Venz S; Hierholzer J; Cordes M; Straub HB; Keske U; Meencke HJ; Eichstädt H; Felix R Nuklearmedizin; 1998 Mar; 37(2):49-56. PubMed ID: 9547750 [TBL] [Abstract][Full Text] [Related]
17. Use of statistical parametric mapping of (18) F-FDG-PET in frontal lobe epilepsy. Plotkin M; Amthauer H; Merschhemke M; Lüdemann L; Hartkop E; Ruf J; Gutberlet M; Bertram H; Meencke HJ; Felix R; Venz S Nuklearmedizin; 2003 Oct; 42(5):190-6. PubMed ID: 14571315 [TBL] [Abstract][Full Text] [Related]
19. 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. Drzezga A; Arnold S; Minoshima S; Noachtar S; Szecsi J; Winkler P; Römer W; Tatsch K; Weber W; Bartenstein P J Nucl Med; 1999 May; 40(5):737-46. PubMed ID: 10319744 [TBL] [Abstract][Full Text] [Related]
20. [Comparison of different methods for attenuation correction in brain PET: effect on the calculation of the metabolic rate of glucose]. Setani K; Schreckenberger M; Sabri O; Meyer PT; Zeggel T; Büll U Nuklearmedizin; 2000; 39(2):50-5. PubMed ID: 10768170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]