These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 9548259)

  • 1. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast.
    Preiss T; Hentze MW
    Nature; 1998 Apr; 392(6675):516-20. PubMed ID: 9548259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cap-independent translation is required for starvation-induced differentiation in yeast.
    Gilbert WV; Zhou K; Butler TK; Doudna JA
    Science; 2007 Aug; 317(5842):1224-7. PubMed ID: 17761883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translation-competent extracts from Saccharomyces cerevisiae: effects of L-A RNA, 5' cap, and 3' poly(A) tail on translational efficiency of mRNAs.
    Iizuka N; Sarnow P
    Methods; 1997 Apr; 11(4):353-60. PubMed ID: 9126550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(A)-tail-promoted translation in yeast: implications for translational control.
    Preiss T; Muckenthaler M; Hentze MW
    RNA; 1998 Nov; 4(11):1321-31. PubMed ID: 9814754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulated poly(A) tail shortening in somatic cells mediated by cap-proximal translational repressor proteins and ribosome association.
    Muckenthaler M; Gunkel N; Stripecke R; Hentze MW
    RNA; 1997 Sep; 3(9):983-95. PubMed ID: 9292498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A poly(A) tail-responsive in vitro system for cap- or IRES-driven translation from HeLa cells.
    Thoma C; Ostareck-Lederer A; Hentze MW
    Methods Mol Biol; 2004; 257():171-80. PubMed ID: 14770005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic proofreading scanning models for eukaryotic translational initiation: the cap and poly(A) tail dependency of translation.
    Bi X; Goss DJ
    J Theor Biol; 2000 Nov; 207(2):145-57. PubMed ID: 11034826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast.
    Ito-Harashima S; Kuroha K; Tatematsu T; Inada T
    Genes Dev; 2007 Mar; 21(5):519-24. PubMed ID: 17344413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function.
    Humphreys DT; Westman BJ; Martin DI; Preiss T
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):16961-6. PubMed ID: 16287976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Translational control by the poly(A) binding protein: a check for mRNA integrity].
    Svitkin YV; Sonenberg N
    Mol Biol (Mosk); 2006; 40(4):684-93. PubMed ID: 16913227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cap and polyA tail enhance translation initiation at the hepatitis C virus internal ribosome entry site by a discontinuous scanning, or shunting, mechanism.
    Wiklund L; SpÄngberg K; Goobar-Larsson L; Schwartz S
    J Hum Virol; 2001; 4(2):74-84. PubMed ID: 11437317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability.
    Vilela C; Ramirez CV; Linz B; Rodrigues-Pousada C; McCarthy JE
    EMBO J; 1999 Jun; 18(11):3139-52. PubMed ID: 10357825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SXL-UNR corepressor complex uses a PABP-mediated mechanism to inhibit ribosome recruitment to msl-2 mRNA.
    Duncan KE; Strein C; Hentze MW
    Mol Cell; 2009 Nov; 36(4):571-82. PubMed ID: 19941818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(A)-binding protein interaction with elF4G stimulates picornavirus IRES-dependent translation.
    Svitkin YV; Imataka H; Khaleghpour K; Kahvejian A; Liebig HD; Sonenberg N
    RNA; 2001 Dec; 7(12):1743-52. PubMed ID: 11780631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cap-independent translation conferred by the 5' leader of tobacco etch virus is eukaryotic initiation factor 4G dependent.
    Gallie DR
    J Virol; 2001 Dec; 75(24):12141-52. PubMed ID: 11711605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ELAV protein HuD stimulates cap-dependent translation in a Poly(A)- and eIF4A-dependent manner.
    Fukao A; Sasano Y; Imataka H; Inoue K; Sakamoto H; Sonenberg N; Thoma C; Fujiwara T
    Mol Cell; 2009 Dec; 36(6):1007-17. PubMed ID: 20064466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translation driven by an eIF4G core domain in vivo.
    De Gregorio E; Preiss T; Hentze MW
    EMBO J; 1999 Sep; 18(17):4865-74. PubMed ID: 10469664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of dengue virus translation: role of the 3' untranslated region and the terminal 3' stem-loop domain.
    Holden KL; Harris E
    Virology; 2004 Nov; 329(1):119-33. PubMed ID: 15476880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host-dependent roles of the viral 5' untranslated region (UTR) in RNA stabilization and cap-independent translational enhancement mediated by the 3' UTR of Red clover necrotic mosaic virus RNA1.
    Sarawaneeyaruk S; Iwakawa HO; Mizumoto H; Murakami H; Kaido M; Mise K; Okuno T
    Virology; 2009 Aug; 391(1):107-18. PubMed ID: 19577782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.