These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9548649)

  • 1. Test of a digestion optimization model: effects of costs of feeding on digestive parameters.
    McWilliams SR; Karasov WH
    Physiol Zool; 1998; 71(2):168-78. PubMed ID: 9548649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Test of a digestion optimization model: effect of variable-reward feeding schedules on digestive performance of a migratory bird.
    McWilliams SR; Karasov WH
    Oecologia; 1998 Apr; 114(2):160-169. PubMed ID: 28307928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digestive efficiencies of Cape white-eyes (Zosterops virens), red-winged starlings (Onychognathus morio) and speckled mousebirds (Colius striatus) fed varying concentrations of equicaloric glucose or sucrose artificial fruit diets.
    Zungu MM; Downs CT
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Sep; 199():28-37. PubMed ID: 27174647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological and evolutionary implications of energy and protein requirements of avian frugivores eating sugary diets.
    Witmer MC
    Physiol Zool; 1998; 71(6):599-610. PubMed ID: 9798248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Test, rejection, and reformulation of a chemical reactor-based model of gut function in a fruit-eating bird.
    Levey DJ; Martínez del Rio C
    Physiol Biochem Zool; 1999; 72(3):369-83. PubMed ID: 10222331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nicotine on the digestive performance of nectar-feeding birds reflect their relative tolerance to this alkaloid.
    Lerch-Henning S; Nicolson SW
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Dec; 190():47-53. PubMed ID: 26348126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digestive response to restricted feeding in migratory yellow-rumped warblers.
    Lee KA; Karasov WH; Caviedes-Vidal E
    Physiol Biochem Zool; 2002; 75(3):314-23. PubMed ID: 12177834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential impact of nutritional strategy on noninvasive measurements of hormones in birds.
    Klasing KC
    Ann N Y Acad Sci; 2005 Jun; 1046():5-16. PubMed ID: 16055840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology of intermittent feeding: integrating responses of vertebrates to nutritional deficit and excess.
    Barboza PS; Hume ID
    Physiol Biochem Zool; 2006; 79(2):250-64. PubMed ID: 16555185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The waxwing Bombycilla garrulus as a frugivorous feeding specialist (author's transl)].
    Berthold P
    Experientia; 1976 Nov; 32(11):1445. PubMed ID: 991992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Many-lined sun skinks (Mabuya multifasciata) do not compensate for the costs of tail loss by increasing feeding rate or digestive efficiency.
    Sun YY; Yang J; Ji X
    J Exp Zool A Ecol Genet Physiol; 2009 Feb; 311(2):125-33. PubMed ID: 19016237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The integration of digestion and osmoregulation in the avian gut.
    McWhorter TJ; Caviedes-Vidal E; Karasov WH
    Biol Rev Camb Philos Soc; 2009 Nov; 84(4):533-65. PubMed ID: 19673857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longer guts and higher food quality increase energy intake in migratory swans.
    van Gils JA; Beekman JH; Coehoorn P; Corporaal E; Dekkers T; Klaassen M; van Kraaij R; de Leeuw R; de Vries PP
    J Anim Ecol; 2008 Nov; 77(6):1234-41. PubMed ID: 18662243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does gut function limit hummingbird food intake?
    McWhorter TJ; Martínez del Rio C
    Physiol Biochem Zool; 2000; 73(3):313-24. PubMed ID: 10893171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digestive responses during food restriction and realimentation in nestling house sparrows (Passer domesticus).
    Lepczyk CA; Caviedes-Vidal E; Karasov WH
    Physiol Zool; 1998; 71(5):561-73. PubMed ID: 9754533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating digestion with foods designed to change the physical characteristics of digesta.
    Lentle RG; Janssen PW
    Crit Rev Food Sci Nutr; 2010 Feb; 50(2):130-45. PubMed ID: 20112156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative methane emission by ratites: Differences in food intake and digesta retention level out methane production.
    Frei S; Hatt JM; Ortmann S; Kreuzer M; Clauss M
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Oct; 188():70-5. PubMed ID: 26123777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent feeding in a migratory omnivore: digestion and body composition of American black duck during autumn.
    Barboza PS; Jorde DG
    Physiol Biochem Zool; 2001; 74(2):307-17. PubMed ID: 11247749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of viscosity on digestion of nutrients in conventional and germ-free chicks.
    Langhout DJ; Schutte JB; de Jong J; Sloetjes H; Verstegen MW; Tamminga S
    Br J Nutr; 2000 May; 83(5):533-40. PubMed ID: 10953678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a tradeoff between retention time and chewing efficiency in large mammalian herbivores.
    Clauss M; Nunn C; Fritz J; Hummel J
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Nov; 154(3):376-82. PubMed ID: 19651229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.