These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 9548655)
1. Dietary flexibility and intestinal plasticity in birds: a field and laboratory study. Sabat P; Novoa F; Bozinovic F; Martínez del Rio C Physiol Zool; 1998; 71(2):226-36. PubMed ID: 9548655 [TBL] [Abstract][Full Text] [Related]
2. Modulation of digestive enzyme activities in the avian digestive tract in relation to diet composition and quality. Kohl KD; Ciminari ME; Chediack JG; Leafloor JO; Karasov WH; McWilliams SR; Caviedes-Vidal E J Comp Physiol B; 2017 Feb; 187(2):339-351. PubMed ID: 27695931 [TBL] [Abstract][Full Text] [Related]
3. Pancreatic and intestinal carbohydrases are matched to dietary starch level in wild passerine birds. Kohl KD; Brzęk P; Caviedes-Vidal E; Karasov WH Physiol Biochem Zool; 2011; 84(2):195-203. PubMed ID: 21460530 [TBL] [Abstract][Full Text] [Related]
4. Dietary modulation of intestinal enzymes of the house sparrow (Passer domesticus): testing an adaptive hypothesis. Caviedes-Vidal E; Afik D; Martinez del Rio C; Karasov WH Comp Biochem Physiol A Mol Integr Physiol; 2000 Jan; 125(1):11-24. PubMed ID: 10779727 [TBL] [Abstract][Full Text] [Related]
5. Feeding and digestive responses to fatty acid intake in two South American passerines with different food habits. Ríos JM; Barceló GF; Narváez C; Maldonado K; Sabat P J Comp Physiol B; 2014 Aug; 184(6):729-39. PubMed ID: 24997538 [TBL] [Abstract][Full Text] [Related]
6. Activity of intestinal carbohydrases responds to multiple dietary signals in nestling house sparrows. Brzek P; Kohl KD; Caviedes-Vidal E; Karasov WH J Exp Biol; 2013 Nov; 216(Pt 21):3981-7. PubMed ID: 23868838 [TBL] [Abstract][Full Text] [Related]
7. Test of the adaptive modulation hypothesis in rodents: dietary flexibility and enzyme plasticity. Sabat P; Lagos JA; Bozinovic F Comp Biochem Physiol A Mol Integr Physiol; 1999 May; 123(1):83-7. PubMed ID: 10425731 [TBL] [Abstract][Full Text] [Related]
8. Dietary modulation of intestinal hydrolytic enzymes in yellow-rumped warblers. Afik D; Vidal EC; Martinez del Rio C; Karasov WH Am J Physiol; 1995 Aug; 269(2 Pt 2):R413-20. PubMed ID: 7653664 [TBL] [Abstract][Full Text] [Related]
9. Tolerance to dietary phenolics and diet breadth in three seed-eating birds: implications for Graminivory. Ríos JM; Mangione AM; Marone L J Exp Zool A Ecol Genet Physiol; 2012 Aug; 317(7):425-33. PubMed ID: 22696310 [TBL] [Abstract][Full Text] [Related]
10. An experimental test of dietary enzyme modulation in pine warblers Dendroica pinus. Levey DJ; Place AR; Rey PJ; Martínez Del Rio C Physiol Biochem Zool; 1999; 72(5):576-87. PubMed ID: 10521325 [TBL] [Abstract][Full Text] [Related]
11. Ontogenesis of intestine morphology and intestinal disaccharidases in chickens (Gallus gallus) fed contrasting purified diets. Biviano AB; Martínez del Rio C; Phillips DL J Comp Physiol B; 1993; 163(6):508-18. PubMed ID: 8071466 [TBL] [Abstract][Full Text] [Related]
12. Energetic costs and implications of the intake of plant secondary metabolites on digestive and renal morphology in two austral passerines. Barceló G; Ríos JM; Maldonado K; Sabat P J Comp Physiol B; 2016 Jul; 186(5):625-37. PubMed ID: 26931656 [TBL] [Abstract][Full Text] [Related]
13. The membrane-bound intestinal enzymes of waxwings and thrushes: adaptive and functional implications of patterns of enzyme activity. Witmer MC; Martínez del Rio C Physiol Biochem Zool; 2001; 74(4):584-93. PubMed ID: 11436143 [TBL] [Abstract][Full Text] [Related]
14. Dietary adaptation to high starch involves increased relative abundance of sucrase-isomaltase and its mRNA in nestling house sparrows. Brun A; Magallanes ME; Barrett-Wilt GA; Karasov WH; Caviedes-Vidal E Am J Physiol Regul Integr Comp Physiol; 2021 Feb; 320(2):R195-R202. PubMed ID: 33175589 [TBL] [Abstract][Full Text] [Related]
15. Are levels of digestive enzyme activity related to the natural diet in passerine birds? Ramírez-Otárola N; Sabat P Biol Res; 2011; 44(1):81-8. PubMed ID: 21720685 [TBL] [Abstract][Full Text] [Related]
16. Sugar and protein digestion in flowerpiercers and hummingbirds: a comparative test of adaptive convergence. Schondube JE; Martinez del Rio C J Comp Physiol B; 2004 Apr; 174(3):263-73. PubMed ID: 14758501 [TBL] [Abstract][Full Text] [Related]
17. Macronutrient signals for adaptive modulation of intestinal digestive enzymes in two omnivorous Galliformes. Oguchi Y; Rolle M; Mai D; Tsai-Brown C; Rott KH; Caviedes-Vidal E; Karasov WH Comp Biochem Physiol A Mol Integr Physiol; 2022 Sep; 271():111243. PubMed ID: 35609804 [TBL] [Abstract][Full Text] [Related]
19. Adaptation of intestinal epithelial hydrolysis and absorption of dietary carbohydrate and protein in mammals and birds. Karasov WH; Caviedes-Vidal E Comp Biochem Physiol A Mol Integr Physiol; 2021 Mar; 253():110860. PubMed ID: 33276129 [TBL] [Abstract][Full Text] [Related]