These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 9548748)
1. Single amino acid substitutions at the N-terminus of a recombinant cytotoxic ribonuclease markedly influence biochemical and biological properties. Newton DL; Boque L; Wlodawer A; Huang CY; Rybak SM Biochemistry; 1998 Apr; 37(15):5173-83. PubMed ID: 9548748 [TBL] [Abstract][Full Text] [Related]
2. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. Boix E; Wu Y; Vasandani VM; Saxena SK; Ardelt W; Ladner J; Youle RJ J Mol Biol; 1996 Apr; 257(5):992-1007. PubMed ID: 8632481 [TBL] [Abstract][Full Text] [Related]
3. Expression and characterization of a cytotoxic human-frog chimeric ribonuclease: potential for cancer therapy. Newton DL; Xue Y; Boqué L; Wlodawer A; Kung HF; Rybak SM Protein Eng; 1997 Apr; 10(4):463-70. PubMed ID: 9194172 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the mechanism of cellular and cell free protein synthesis inhibition by an anti-tumor ribonuclease. Lin JJ; Newton DL; Mikulski SM; Kung HF; Youle RJ; Rybak SM Biochem Biophys Res Commun; 1994 Oct; 204(1):156-62. PubMed ID: 7945354 [TBL] [Abstract][Full Text] [Related]
5. Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Iordanov MS; Ryabinina OP; Wong J; Dinh TH; Newton DL; Rybak SM; Magun BE Cancer Res; 2000 Apr; 60(7):1983-94. PubMed ID: 10766189 [TBL] [Abstract][Full Text] [Related]
6. Effect of N-terminal and Met23 mutations on the structure and dynamics of onconase. Gorbatyuk VY; Tsai CK; Chang CF; Huang TH J Biol Chem; 2004 Feb; 279(7):5772-80. PubMed ID: 14645226 [TBL] [Abstract][Full Text] [Related]
7. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. Wu Y; Mikulski SM; Ardelt W; Rybak SM; Youle RJ J Biol Chem; 1993 May; 268(14):10686-93. PubMed ID: 8486718 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. Rybak SM; Pearson JW; Fogler WE; Volker K; Spence SE; Newton DL; Mikulski SM; Ardelt W; Riggs CW; Kung HF; Longo DL J Natl Cancer Inst; 1996 Jun; 88(11):747-53. PubMed ID: 8637029 [TBL] [Abstract][Full Text] [Related]
10. [Structural-functional study of recombinant forms of onconase]. Vorob'ev II; Ponomarenko NA; Durova OM; Kozyr' AV; Demin AV; Kolesnikov AV; Sashchenko LP; Karpeĭskiĭ MIa; Gabibov AG Bioorg Khim; 2001; 27(4):257-64. PubMed ID: 11558259 [TBL] [Abstract][Full Text] [Related]
11. Effective expression and purification of recombinant onconase, an antitumor protein. Notomista E; Cafaro V; Fusiello R; Bracale A; D'Alessio G; Di Donato A FEBS Lett; 1999 Dec; 463(3):211-5. PubMed ID: 10606723 [TBL] [Abstract][Full Text] [Related]
12. [Effective expression of ribonuclease-onconase in Escherichia coli and assaying its cytotoxic potential]. Xu GF; Wang QC; Gong XG; Fei J Shi Yan Sheng Wu Xue Bao; 2004 Jun; 37(3):227-31. PubMed ID: 15323425 [TBL] [Abstract][Full Text] [Related]
13. A study of the intracellular routing of cytotoxic ribonucleases. Wu Y; Saxena SK; Ardelt W; Gadina M; Mikulski SM; De Lorenzo C; D'Alessio G; Youle RJ J Biol Chem; 1995 Jul; 270(29):17476-81. PubMed ID: 7542240 [TBL] [Abstract][Full Text] [Related]
14. Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains. Newton DL; Xue Y; Olson KA; Fett JW; Rybak SM Biochemistry; 1996 Jan; 35(2):545-53. PubMed ID: 8555226 [TBL] [Abstract][Full Text] [Related]
15. Constitutive expression and anticancer potency of a novel immunotoxin onconase-DV3. Sun M; Tang H; Gao Y; Dai X; Yuan Y; Zhang C; Sun D Oncol Rep; 2016 Apr; 35(4):1987-94. PubMed ID: 26782924 [TBL] [Abstract][Full Text] [Related]
16. Quantitative analysis, using MALDI-TOF mass spectrometry, of the N-terminal hydrolysis and cyclization reactions of the activation process of onconase. Ribó M; Bosch M; Torrent G; Benito A; Beaumelle B; Vilanova M Eur J Biochem; 2004 Mar; 271(6):1163-71. PubMed ID: 15009195 [TBL] [Abstract][Full Text] [Related]
17. Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase. Liao YD; Jeng JC; Wang CF; Wang SC; Chang ST Protein Sci; 2004 Jul; 13(7):1802-10. PubMed ID: 15215523 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of HIV-1 production and selective degradation of viral RNA by an amphibian ribonuclease. Saxena SK; Gravell M; Wu YN; Mikulski SM; Shogen K; Ardelt W; Youle RJ J Biol Chem; 1996 Aug; 271(34):20783-8. PubMed ID: 8702832 [TBL] [Abstract][Full Text] [Related]
19. Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Ardelt W; Shogen K; Darzynkiewicz Z Curr Pharm Biotechnol; 2008 Jun; 9(3):215-25. PubMed ID: 18673287 [TBL] [Abstract][Full Text] [Related]
20. RNA cleavage and inhibition of protein synthesis by bleomycin. Abraham AT; Lin JJ; Newton DL; Rybak S; Hecht SM Chem Biol; 2003 Jan; 10(1):45-52. PubMed ID: 12573697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]