These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 9548753)

  • 1. Formation of native disulfide bonds in endothelin-1. Structural evidence for the involvement of a highly specific salt bridge between the prosequence and the endothelin-1 sequence.
    Aumelas A; Kubo S; Chino N; Chiche L; Forest E; Roumestand C; Kobayashi Y
    Biochemistry; 1998 Apr; 37(15):5220-30. PubMed ID: 9548753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution X-ray structure of the unexpectedly stable dimer of the [Lys(-2)-Arg(-1)-des(17-21)]endothelin-1 peptide.
    Hoh F; Cerdan R; Kaas Q; Nishi Y; Chiche L; Kubo S; Chino N; Kobayashi Y; Dumas C; Aumelas A
    Biochemistry; 2004 Dec; 43(48):15154-68. PubMed ID: 15568807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The [Lys(-2)-Arg(-1)-des(17-21)]-endothelin-1 peptide retains the specific Arg(-1)-Asp8 salt bridge but reveals discrepancies between NMR data and molecular dynamics simulations.
    Kaas Q; Aumelas A; Kubo S; Chino N; Kobayashi Y; Chiche L
    Biochemistry; 2002 Sep; 41(37):11099-108. PubMed ID: 12220174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chimeric peptide [Lys(-2)-Arg(-1)]-sarafotoxin-S6b, composed of the endothelin pro-sequence and sarafotoxin, retains the salt-bridge staple between Arg(-1) and Asp8 previously observed in [Lys(-2)-Arg(-1)]-endothelin. Implications of this salt-bridge in the contractile activity and the oxidative folding reaction.
    Aumelas A; Chiche L; Kubo S; Chino N; Watanabe TX; Kobayashi Y
    Eur J Biochem; 1999 Dec; 266(3):977-85. PubMed ID: 10583392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Lys(-2)-Arg(-1)]endothelin-1 solution structure by two-dimensional 1H-NMR: possible involvement of electrostatic interactions in native disulfide bridge formation and in biological activity decrease.
    Aumelas A; Chiche L; Kubo S; Chino N; Tamaoki H; Kobayashi Y
    Biochemistry; 1995 Apr; 34(14):4546-61. PubMed ID: 7718556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of disulfide bonds for the structure and folding of proguanylin.
    Lauber T; Schulz A; Rösch P; Marx UC
    Biochemistry; 2004 Aug; 43(31):10050-7. PubMed ID: 15287732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis, and conformation of a model peptide of endothelin with cystine-stabilized alpha-helix motif.
    Mihara H; Tomizaki KY; Nishino N; Fujimoto T; Tamaoki H; Kobayashi Y
    Biopolymers; 1994 Jul; 34(7):963-7. PubMed ID: 8054474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor.
    Liu Y; Breslauer K; Anderson S
    Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure determination of the three disulfide bond isomers of alpha-conotoxin GI: a model for the role of disulfide bonds in structural stability.
    Gehrmann J; Alewood PF; Craik DJ
    J Mol Biol; 1998 May; 278(2):401-15. PubMed ID: 9571060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of disulfide bonds in the structure and function of murine epidermal growth factor (mEGF).
    Alewood D; Nielsen K; Alewood PF; Craik DJ; Andrews P; Nerrie M; White S; Domagala T; Walker F; Rothacker J; Burgess AW; Nice EC
    Growth Factors; 2005 Jun; 23(2):97-110. PubMed ID: 16019431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isomorphous replacement of cystine with selenocystine in endothelin: oxidative refolding, biological and conformational properties of [Sec3,Sec11,Nle7]-endothelin-1.
    Pegoraro S; Fiori S; Rudolph-Böhner S; Watanabe TX; Moroder L
    J Mol Biol; 1998 Dec; 284(3):779-92. PubMed ID: 9826515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation.
    Drakopoulou E; Vizzavona J; Neyton J; Aniort V; Bouet F; Virelizier H; Ménez A; Vita C
    Biochemistry; 1998 Feb; 37(5):1292-301. PubMed ID: 9477955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of a salt bridge in the model protein crambin explored by chemical protein synthesis: X-ray structure of a unique protein analogue, [V15A]crambin-alpha-carboxamide.
    Bang D; Tereshko V; Kossiakoff AA; Kent SB
    Mol Biosyst; 2009 Jul; 5(7):750-6. PubMed ID: 19562114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the prosequence of guanylin.
    Schulz A; Marx UC; Hidaka Y; Shimonishi Y; Rösch P; Forssmann WG; Adermann K
    Protein Sci; 1999 Sep; 8(9):1850-9. PubMed ID: 10493586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of a single amino acid changes the folding of an apamin hybrid sequence peptide to that of endothelin.
    Volkman BF; Wemmer DE
    Biopolymers; 1997 Apr; 41(4):451-60. PubMed ID: 9080780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and structure-forming properties of the two disulfide bonds of alpha-conotoxin GI.
    Kaerner A; Rabenstein DL
    Biochemistry; 1999 Apr; 38(17):5459-70. PubMed ID: 10220333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Asn(2) and Glu(7) residues in the oxidative folding and on the conformation of the N-terminal loop of apamin.
    Le-Nguyen D; Chiche L; Hoh F; Martin-Eauclaire MF; Dumas C; Nishi Y; Kobayashi Y; Aumelas A
    Biopolymers; 2007 Aug 5-15; 86(5-6):447-62. PubMed ID: 17486576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native and non-native structure in a protein-folding intermediate: spectroscopic studies of partially reduced IGF-I and an engineered alanine model.
    Hua QX; Narhi L; Jia W; Arakawa T; Rosenfeld R; Hawkins N; Miller JA; Weiss MA
    J Mol Biol; 1996 Jun; 259(2):297-313. PubMed ID: 8656430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assignment of disulphide bonds in synthetic endothelin-1 isomers by fast atom bombardment mass spectrometry.
    Ishibashi Y; Kikuchi T; Wakimasu M; Mizuta E; Fujino M
    Biol Mass Spectrom; 1991 Nov; 20(11):703-8. PubMed ID: 1799581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.
    Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.