These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 9548760)
1. Interaction of mant-adenosine nucleotides and magnesium with kinesin. Cheng JQ; Jiang W; Hackney DD Biochemistry; 1998 Apr; 37(15):5288-95. PubMed ID: 9548760 [TBL] [Abstract][Full Text] [Related]
2. Kinetic mechanism of monomeric non-claret disjunctional protein (Ncd) ATPase. Pechatnikova E; Taylor EW J Biol Chem; 1997 Dec; 272(49):30735-40. PubMed ID: 9388211 [TBL] [Abstract][Full Text] [Related]
3. Kinetics processivity and the direction of motion of Ncd. Pechatnikova E; Taylor EW Biophys J; 1999 Aug; 77(2):1003-16. PubMed ID: 10423445 [TBL] [Abstract][Full Text] [Related]
4. Alternating site mechanism of the kinesin ATPase. Gilbert SP; Moyer ML; Johnson KA Biochemistry; 1998 Jan; 37(3):792-9. PubMed ID: 9454568 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of microtubule kinesin ATPase. Ma YZ; Taylor EW Biochemistry; 1995 Oct; 34(40):13242-51. PubMed ID: 7548088 [TBL] [Abstract][Full Text] [Related]
6. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175 [TBL] [Abstract][Full Text] [Related]
7. Biochemical characterization of the novel rice kinesin K23 and its kinetic study using fluorescence resonance energy transfer between an intrinsic tryptophan residue and a fluorescent ATP analogue. Umezu N; Hanzawa N; Yamada MD; Kondo K; Mitsui T; Maruta S J Biochem; 2011 May; 149(5):539-50. PubMed ID: 21278385 [TBL] [Abstract][Full Text] [Related]
8. Analysis of steady-state Förster resonance energy transfer data by avoiding pitfalls: interaction of JAK2 tyrosine kinase with N-methylanthraniloyl nucleotides. Niranjan Y; Ungureanu D; Hammarén H; Sanz-Sanz A; Westphal AH; Borst JW; Silvennoinen O; Hilhorst R Anal Biochem; 2013 Nov; 442(2):213-22. PubMed ID: 23891636 [TBL] [Abstract][Full Text] [Related]
9. Conformational changes in the unique loops bordering the ATP binding cleft of skeletal muscle myosin mediate energy transduction. Maruta S; Homma K J Biochem; 2000 Oct; 128(4):695-704. PubMed ID: 11011153 [TBL] [Abstract][Full Text] [Related]
10. X-ray crystal structure and solution fluorescence characterization of Mg.2'(3')-O-(N-methylanthraniloyl) nucleotides bound to the Dictyostelium discoideum myosin motor domain. Bauer CB; Kuhlman PA; Bagshaw CR; Rayment I J Mol Biol; 1997 Dec; 274(3):394-407. PubMed ID: 9405148 [TBL] [Abstract][Full Text] [Related]
11. Interacting head mechanism of microtubule-kinesin ATPase. Ma YZ; Taylor EW J Biol Chem; 1997 Jan; 272(2):724-30. PubMed ID: 8995356 [TBL] [Abstract][Full Text] [Related]
12. Coupled chemical and mechanical reaction steps in a processive Neurospora kinesin. Crevel I; Carter N; Schliwa M; Cross R EMBO J; 1999 Nov; 18(21):5863-72. PubMed ID: 10545098 [TBL] [Abstract][Full Text] [Related]
13. Kinesin tail domains and Mg2+ directly inhibit release of ADP from head domains in the absence of microtubules. Hackney DD; Stock MF Biochemistry; 2008 Jul; 47(29):7770-8. PubMed ID: 18578509 [TBL] [Abstract][Full Text] [Related]
14. Pathway of ADP-stimulated ADP release and dissociation of tethered kinesin from microtubules. Implications for the extent of processivity. Hackney DD Biochemistry; 2002 Apr; 41(13):4437-46. PubMed ID: 11914091 [TBL] [Abstract][Full Text] [Related]
16. Pre-steady-state kinetics of the microtubule-kinesin ATPase. Gilbert SP; Johnson KA Biochemistry; 1994 Feb; 33(7):1951-60. PubMed ID: 8110800 [TBL] [Abstract][Full Text] [Related]
17. Structural characteristics of the nucleotide-binding site of Escherichia coli primary replicative helicase DnaB protein. Studies with ribose and base-modified fluorescent nucleotide analogs. Bujalowski W; Klonowska MM Biochemistry; 1994 Apr; 33(15):4682-94. PubMed ID: 8161526 [TBL] [Abstract][Full Text] [Related]
18. Pathway of processive ATP hydrolysis by kinesin. Gilbert SP; Webb MR; Brune M; Johnson KA Nature; 1995 Feb; 373(6516):671-6. PubMed ID: 7854446 [TBL] [Abstract][Full Text] [Related]
19. The rate-limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule. Hackney DD J Biol Chem; 1994 Jun; 269(23):16508-11. PubMed ID: 8206961 [TBL] [Abstract][Full Text] [Related]
20. Evidence for a second nucleotide binding site in rat elongation factor eEF-2 specific for adenylic nucleotides. Gonzalo P; Sontag B; Lavergne JP; Jault JM; Reboud JP Biochemistry; 2000 Nov; 39(44):13558-64. PubMed ID: 11063593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]