BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9548760)

  • 1. Interaction of mant-adenosine nucleotides and magnesium with kinesin.
    Cheng JQ; Jiang W; Hackney DD
    Biochemistry; 1998 Apr; 37(15):5288-95. PubMed ID: 9548760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism of monomeric non-claret disjunctional protein (Ncd) ATPase.
    Pechatnikova E; Taylor EW
    J Biol Chem; 1997 Dec; 272(49):30735-40. PubMed ID: 9388211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics processivity and the direction of motion of Ncd.
    Pechatnikova E; Taylor EW
    Biophys J; 1999 Aug; 77(2):1003-16. PubMed ID: 10423445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternating site mechanism of the kinesin ATPase.
    Gilbert SP; Moyer ML; Johnson KA
    Biochemistry; 1998 Jan; 37(3):792-9. PubMed ID: 9454568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of microtubule kinesin ATPase.
    Ma YZ; Taylor EW
    Biochemistry; 1995 Oct; 34(40):13242-51. PubMed ID: 7548088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of the novel rice kinesin K23 and its kinetic study using fluorescence resonance energy transfer between an intrinsic tryptophan residue and a fluorescent ATP analogue.
    Umezu N; Hanzawa N; Yamada MD; Kondo K; Mitsui T; Maruta S
    J Biochem; 2011 May; 149(5):539-50. PubMed ID: 21278385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of steady-state Förster resonance energy transfer data by avoiding pitfalls: interaction of JAK2 tyrosine kinase with N-methylanthraniloyl nucleotides.
    Niranjan Y; Ungureanu D; Hammarén H; Sanz-Sanz A; Westphal AH; Borst JW; Silvennoinen O; Hilhorst R
    Anal Biochem; 2013 Nov; 442(2):213-22. PubMed ID: 23891636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes in the unique loops bordering the ATP binding cleft of skeletal muscle myosin mediate energy transduction.
    Maruta S; Homma K
    J Biochem; 2000 Oct; 128(4):695-704. PubMed ID: 11011153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray crystal structure and solution fluorescence characterization of Mg.2'(3')-O-(N-methylanthraniloyl) nucleotides bound to the Dictyostelium discoideum myosin motor domain.
    Bauer CB; Kuhlman PA; Bagshaw CR; Rayment I
    J Mol Biol; 1997 Dec; 274(3):394-407. PubMed ID: 9405148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interacting head mechanism of microtubule-kinesin ATPase.
    Ma YZ; Taylor EW
    J Biol Chem; 1997 Jan; 272(2):724-30. PubMed ID: 8995356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled chemical and mechanical reaction steps in a processive Neurospora kinesin.
    Crevel I; Carter N; Schliwa M; Cross R
    EMBO J; 1999 Nov; 18(21):5863-72. PubMed ID: 10545098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinesin tail domains and Mg2+ directly inhibit release of ADP from head domains in the absence of microtubules.
    Hackney DD; Stock MF
    Biochemistry; 2008 Jul; 47(29):7770-8. PubMed ID: 18578509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathway of ADP-stimulated ADP release and dissociation of tethered kinesin from microtubules. Implications for the extent of processivity.
    Hackney DD
    Biochemistry; 2002 Apr; 41(13):4437-46. PubMed ID: 11914091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization.
    Huang TG; Hackney DD
    J Biol Chem; 1994 Jun; 269(23):16493-501. PubMed ID: 8206959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-steady-state kinetics of the microtubule-kinesin ATPase.
    Gilbert SP; Johnson KA
    Biochemistry; 1994 Feb; 33(7):1951-60. PubMed ID: 8110800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characteristics of the nucleotide-binding site of Escherichia coli primary replicative helicase DnaB protein. Studies with ribose and base-modified fluorescent nucleotide analogs.
    Bujalowski W; Klonowska MM
    Biochemistry; 1994 Apr; 33(15):4682-94. PubMed ID: 8161526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway of processive ATP hydrolysis by kinesin.
    Gilbert SP; Webb MR; Brune M; Johnson KA
    Nature; 1995 Feb; 373(6516):671-6. PubMed ID: 7854446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rate-limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule.
    Hackney DD
    J Biol Chem; 1994 Jun; 269(23):16508-11. PubMed ID: 8206961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a second nucleotide binding site in rat elongation factor eEF-2 specific for adenylic nucleotides.
    Gonzalo P; Sontag B; Lavergne JP; Jault JM; Reboud JP
    Biochemistry; 2000 Nov; 39(44):13558-64. PubMed ID: 11063593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.