These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9548767)

  • 21. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review.
    Van der Zee FP; Cervantes FJ
    Biotechnol Adv; 2009; 27(3):256-77. PubMed ID: 19500549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1.
    Linkfield TG; Tiedje JM
    J Ind Microbiol; 1990 Jan; 5(1):9-15. PubMed ID: 1366377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The potential for bacteria from carbon-limited deep terrestrial environments to participate in chlorine cycling.
    Bhattarai S; Temme H; Jain A; Badalamenti JP; Gralnick JA; Novak PJ
    FEMS Microbiol Ecol; 2022 May; 98(6):. PubMed ID: 35511595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Unsaturated organic acids as terminal electron acceptors for reductase chains of anaerobic bacteria].
    Arkhipova OV; Akumenko VK
    Mikrobiologiia; 2005; 74(6):725-37. PubMed ID: 16400981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The quest for microbial reductive dechlorination of C (2) to C (4) chloroalkanes is warranted.
    De Wildeman S; Verstraete W
    Appl Microbiol Biotechnol; 2003 Apr; 61(2):94-102. PubMed ID: 12655450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon/electron source dependence of polychlorinated biphenyl dechlorination pathways for anaerobic granules.
    Nollet H; Van de Putte I; Raskin L; Verstraete W
    Chemosphere; 2005 Jan; 58(3):299-310. PubMed ID: 15581933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply.
    Heimann AC; Friis AK; Jakobsen R
    Water Res; 2005 Sep; 39(15):3579-86. PubMed ID: 16085242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dehalogenation in environmental biotechnology.
    Wackett LP
    Curr Opin Biotechnol; 1994 Jun; 5(3):260-5. PubMed ID: 7765008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei.
    DeWeerd KA; Concannon F; Suflita JM
    Appl Environ Microbiol; 1991 Jul; 57(7):1929-34. PubMed ID: 1892383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology.
    dos Santos AB; Cervantes FJ; van Lier JB
    Bioresour Technol; 2007 Sep; 98(12):2369-85. PubMed ID: 17204423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of xenobiotics by anaerobic bacteria.
    Zhang C; Bennett GN
    Appl Microbiol Biotechnol; 2005 Jun; 67(5):600-18. PubMed ID: 15672270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaerobic mineralization of pentachlorophenol (PCP) by combining PCP-dechlorinating and phenol-degrading cultures.
    Yang S; Shibata A; Yoshida N; Katayama A
    Biotechnol Bioeng; 2009 Jan; 102(1):81-90. PubMed ID: 18683261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1.
    Utkin I; Dalton DD; Wiegel J
    Appl Environ Microbiol; 1995 Jan; 61(1):346-51. PubMed ID: 7887614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-specific microbial communities in three PCB-impacted sediments are associated with different in situ dechlorinating activities.
    Kjellerup BV; Sun X; Ghosh U; May HD; Sowers KR
    Environ Microbiol; 2008 May; 10(5):1296-309. PubMed ID: 18312399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy-based models for environmental biotechnology.
    Rodríguez J; Lema JM; Kleerebezem R
    Trends Biotechnol; 2008 Jul; 26(7):366-74. PubMed ID: 18513813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical and genetic bases of dehalorespiration.
    Futagami T; Goto M; Furukawa K
    Chem Rec; 2008; 8(1):1-12. PubMed ID: 18302277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of chlorinated aliphatic compounds.
    Leisinger T
    Curr Opin Biotechnol; 1996 Jun; 7(3):295-300. PubMed ID: 8785433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.
    Müller G
    Chemosphere; 2003 Jul; 52(2):371-9. PubMed ID: 12738259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of microbial granules for PCB dechlorination.
    Nollet H; Verstraete W
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):185-9. PubMed ID: 15296159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Bioremediation of soils and sediments polluted by polychlorinated biphenyls].
    Vasil'eva GK; Strizhakova ER
    Mikrobiologiia; 2007; 76(6):725-41. PubMed ID: 18297863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.