BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9548948)

  • 1. Synergistic effects of diacylglycerols and fatty acids on membrane structure and protein kinase C activity.
    Goldberg EM; Zidovetzki R
    Biochemistry; 1998 Apr; 37(16):5623-32. PubMed ID: 9548948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dipalmitoylglycerol and fatty acids on membrane structure and protein kinase C activity.
    Goldberg EM; Zidovetzki R
    Biophys J; 1997 Nov; 73(5):2603-14. PubMed ID: 9370455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ceramides modulate protein kinase C activity and perturb the structure of Phosphatidylcholine/Phosphatidylserine bilayers.
    Huang HW; Goldberg EM; Zidovetzki R
    Biophys J; 1999 Sep; 77(3):1489-97. PubMed ID: 10465759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers.
    Goldberg EM; Lester DS; Borchardt DB; Zidovetzki R
    Biophys J; 1994 Feb; 66(2 Pt 1):382-93. PubMed ID: 8161692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of diacylglycerols on the structure of phosphatidylcholine bilayers: a 2H and 31P NMR study.
    De Boeck H; Zidovetzki R
    Biochemistry; 1989 Sep; 28(18):7439-46. PubMed ID: 2819079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of diacylglycerols on conformation of phosphatidylcholine headgroups in phosphatidylcholine/phosphatidylserine bilayers.
    Goldberg EM; Lester DS; Borchardt DB; Zidovetzki R
    Biophys J; 1995 Sep; 69(3):965-73. PubMed ID: 8519996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of saturated diacylglycerols with phosphatidylcholine bilayers: A 2H NMR study.
    De Boeck H; Zidovetzki R
    Biochemistry; 1992 Jan; 31(2):623-30. PubMed ID: 1731917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and functional properties of diacylglycerols in membranes.
    Goñi FM; Alonso A
    Prog Lipid Res; 1999 Jan; 38(1):1-48. PubMed ID: 10396601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amended final report on the safety assessment of glyceryl dilaurate, glyceryl diarachidate, glyceryl dibehenate, glyceryl dierucate, glyceryl dihydroxystearate, glyceryl diisopalmitate, glyceryl diisostearate, glyceryl dilinoleate, glyceryl dimyristate, glyceryl dioleate, glyceryl diricinoleate, glyceryl dipalmitate, glyceryl dipalmitoleate, glyceryl distearate, glyceryl palmitate lactate, glyceryl stearate citrate, glyceryl stearate lactate, and glyceryl stearate succinate.
    Int J Toxicol; 2007; 26 Suppl 3():1-30. PubMed ID: 18273450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that nonbilayer phase propensity of the membrane is important for the side chain cleavage activity of cytochrome P450SCC.
    Schwarz D; Kisselev P; Pfeil W; Pisch S; Bornscheuer U; Schmid RD
    Biochemistry; 1997 Nov; 36(46):14262-70. PubMed ID: 9369499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between bilayer lipid dynamics and activity of the diglucosyldiacylglycerol synthase from Acholeplasma laidlawii membranes.
    Karlsson OP; Rytömaa M; Dahlqvist A; Kinnunen PK; Wieslander A
    Biochemistry; 1996 Aug; 35(31):10094-102. PubMed ID: 8756472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of annexin V on the structure and dynamics of phosphatidylcholine/phosphatidylserine bilayers: a fluorescence and NMR study.
    Saurel O; Cézanne L; Milon A; Tocanne JF; Demange P
    Biochemistry; 1998 Feb; 37(5):1403-10. PubMed ID: 9477969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction modes of long-chain fatty acids in dipalmitoylphosphatidylcholine bilayer membrane: contrast to mode of inhalation anesthetics.
    Nishimoto M; Hata T; Goto M; Tamai N; Kaneshina S; Matsuki H; Ueda I
    Chem Phys Lipids; 2009 Apr; 158(2):71-80. PubMed ID: 19428351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of membrane defects in the regulation of the activity of protein kinase C.
    Senisterra G; Epand RM
    Arch Biochem Biophys; 1993 Jan; 300(1):378-83. PubMed ID: 8424671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A synergistic effect between cholesterol and tryptophan-flanked transmembrane helices modulates membrane curvature.
    van Duyl BY; Meeldijk H; Verkleij AJ; Rijkers DT; Chupin V; de Kruijff B; Killian JA
    Biochemistry; 2005 Mar; 44(11):4526-32. PubMed ID: 15766283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free fatty acids modulate intermembrane trafficking of cholesterol by increasing lipid mobilities: novel 13C NMR analyses of free cholesterol partitioning.
    Johnson RA; Hamilton JA; Worgall TS; Deckelbaum RJ
    Biochemistry; 2003 Feb; 42(6):1637-45. PubMed ID: 12578377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic perturbation of phosphatidylcholine/sphingomyelin bilayers by diacylglycerol and cholesterol.
    Armstrong DL; Borchardt DB; Zidovetzki R
    Biochem Biophys Res Commun; 2002 Aug; 296(4):806-12. PubMed ID: 12200119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures.
    Huster D; Arnold K; Gawrisch K
    Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of oleic acid and model stratum corneum membranes as seen by 2H NMR.
    Rowat AC; Kitson N; Thewalt JL
    Int J Pharm; 2006 Jan; 307(2):225-31. PubMed ID: 16293379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.