These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9548954)

  • 1. Intra- vs intersubunit communication in the homodimeric restriction enzyme EcoRV: Thr 37 and Lys 38 involved in indirect readout are only important for the catalytic activity of their own subunit.
    Stahl F; Wende W; Wenz C; Jeltsch A; Pingoud A
    Biochemistry; 1998 Apr; 37(16):5682-8. PubMed ID: 9548954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does the restriction endonuclease EcoRV employ a two-metal-Ion mechanism for DNA cleavage?
    Groll DH; Jeltsch A; Selent U; Pingoud A
    Biochemistry; 1997 Sep; 36(38):11389-401. PubMed ID: 9298958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational transitions and structural deformability of EcoRV endonuclease revealed by crystallographic analysis.
    Perona JJ; Martin AM
    J Mol Biol; 1997 Oct; 273(1):207-25. PubMed ID: 9367757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introduction of asymmetry in the naturally symmetric restriction endonuclease EcoRV to investigate intersubunit communication in the homodimeric protein.
    Stahl F; Wende W; Jeltsch A; Pingoud A
    Proc Natl Acad Sci U S A; 1996 Jun; 93(12):6175-80. PubMed ID: 8650239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites.
    Horton NC; Perona JJ
    Biochemistry; 2004 Jun; 43(22):6841-57. PubMed ID: 15170321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of variants of the restriction endonuclease EcoRV that depend in their cleavage activity on the flexibility of sequences flanking the recognition site.
    Wenz C; Hahn M; Pingoud A
    Biochemistry; 1998 Feb; 37(8):2234-42. PubMed ID: 9485369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent joining of the subunits of a homodimeric type II restriction endonuclease: single-chain PvuII endonuclease.
    Simoncsits A; Tjörnhammar ML; Raskó T; Kiss A; Pongor S
    J Mol Biol; 2001 May; 309(1):89-97. PubMed ID: 11491304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic efficiency and sequence selectivity of a restriction endonuclease modulated by a distal manganese ion binding site.
    Sam MD; Horton NC; Nissan TA; Perona JJ
    J Mol Biol; 2001 Mar; 306(4):851-61. PubMed ID: 11243793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based redesign of the catalytic/metal binding site of Cfr10I restriction endonuclease reveals importance of spatial rather than sequence conservation of active centre residues.
    Skirgaila R; Grazulis S; Bozic D; Huber R; Siksnys V
    J Mol Biol; 1998 Jun; 279(2):473-81. PubMed ID: 9642051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random mutagenesis targeted to the active site of the EcoRV restriction endonuclease.
    Vipond IB; Halford SE
    Biochemistry; 1996 Feb; 35(6):1701-11. PubMed ID: 8639649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The production and characterization of artificial heterodimers of the restriction endonuclease EcoRV.
    Wende W; Stahl F; Pingoud A
    Biol Chem; 1996 Oct; 377(10):625-32. PubMed ID: 8922590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divalent metal dependence of site-specific DNA binding by EcoRV endonuclease.
    Martin AM; Horton NC; Lusetti S; Reich NO; Perona JJ
    Biochemistry; 1999 Jun; 38(26):8430-9. PubMed ID: 10387089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of a mutational hot spot in the EcoRV restriction endonuclease.
    Hancox EL; Halford SE
    Biochemistry; 1997 Jun; 36(24):7577-85. PubMed ID: 9200709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-cognate enzyme-DNA complex: structural and kinetic analysis of EcoRV endonuclease bound to the EcoRI recognition site GAATTC.
    Hiller DA; Rodriguez AM; Perona JJ
    J Mol Biol; 2005 Nov; 354(1):121-36. PubMed ID: 16236314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the indirect readout of the restriction enzyme EcoRV. Mutational analysis of contacts to the DNA backbone.
    Wenz C; Jeltsch A; Pingoud A
    J Biol Chem; 1996 Mar; 271(10):5565-73. PubMed ID: 8621416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An isoleucine to leucine mutation that switches the cofactor requirement of the EcoRV restriction endonuclease from magnesium to manganese.
    Vipond IB; Moon BJ; Halford SE
    Biochemistry; 1996 Feb; 35(6):1712-21. PubMed ID: 8639650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA cleavage by the EcoRV restriction endonuclease: pH dependence and proton transfers in catalysis.
    Stanford NP; Halford SE; Baldwin GS
    J Mol Biol; 1999 Apr; 288(1):105-16. PubMed ID: 10329129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosslinking the EcoRV restriction endonuclease across the DNA-binding site reveals transient intermediates and conformational changes of the enzyme during DNA binding and catalytic turnover.
    Schulze C; Jeltsch A; Franke I; Urbanke C; Pingoud A
    EMBO J; 1998 Nov; 17(22):6757-66. PubMed ID: 9822618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.