BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9548958)

  • 1. Modulation of lipid polymorphism by the feline leukemia virus fusion peptide: implications for the fusion mechanism.
    Davies SM; Epand RF; Bradshaw JP; Epand RM
    Biochemistry; 1998 Apr; 37(16):5720-9. PubMed ID: 9548958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between the infectivity of influenza virus and the ability of its fusion peptide to perturb bilayers.
    Epand RM; Epand RF
    Biochem Biophys Res Commun; 1994 Aug; 202(3):1420-5. PubMed ID: 8060322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane orientation of the SIV fusion peptide determines its effect on bilayer stability and ability to promote membrane fusion.
    Epand RF; Martin I; Ruysschaert JM; Epand RM
    Biochem Biophys Res Commun; 1994 Dec; 205(3):1938-43. PubMed ID: 7811285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity.
    Prenner EJ; Lewis RN; Neuman KC; Gruner SM; Kondejewski LH; Hodges RS; McElhaney RN
    Biochemistry; 1997 Jun; 36(25):7906-16. PubMed ID: 9201936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural study of the interaction between the SIV fusion peptide and model membranes.
    Colotto A; Martin I; Ruysschaert JM; Sen A; Hui SW; Epand RM
    Biochemistry; 1996 Jan; 35(3):980-9. PubMed ID: 8547281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray diffraction study of feline leukemia virus fusion peptide and lipid polymorphism.
    Darkes MJ; Davies SM; Bradshaw JP
    FEBS Lett; 1999 Nov; 461(3):178-82. PubMed ID: 10567693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids.
    Holland JW; Cullis PR; Madden TD
    Biochemistry; 1996 Feb; 35(8):2610-7. PubMed ID: 8611564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms.
    Siegel DP; Epand RM
    Biochim Biophys Acta; 2000 Sep; 1468(1-2):87-98. PubMed ID: 11018654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors contributing to the fusogenic potency of foamy virus.
    Epand RM; Epand RF
    Biochem Biophys Res Commun; 2001 Jun; 284(4):870-4. PubMed ID: 11409874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies.
    Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN
    Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures.
    Angelova A; Ionov R; Koch MH; Rapp G
    Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of single chain lipids on phospholipase C-promoted vesicle fusion. A test for the stalk hypothesis of membrane fusion.
    Basáñez G; Goñi FM; Alonso A
    Biochemistry; 1998 Mar; 37(11):3901-8. PubMed ID: 9521711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers.
    Colotto A; Epand RM
    Biochemistry; 1997 Jun; 36(25):7644-51. PubMed ID: 9201905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton induced vesicle fusion and the isothermal lalpha-->HII phase transition of lipid bilayers: a 31P-NMR and titration calorimetry study.
    Wenk MR; Seelig J
    Biochim Biophys Acta; 1998 Jul; 1372(2):227-36. PubMed ID: 9675291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms.
    Siegel DP; Epand RM
    Biophys J; 1997 Dec; 73(6):3089-111. PubMed ID: 9414222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes studied by solid state NMR.
    Grage SL; Afonin S; Grüne M; Ulrich AS
    Chem Phys Lipids; 2004 Nov; 132(1):65-77. PubMed ID: 15530449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ectodomain of HA2 of influenza virus promotes rapid pH dependent membrane fusion.
    Epand RF; Macosko JC; Russell CJ; Shin YK; Epand RM
    J Mol Biol; 1999 Feb; 286(2):489-503. PubMed ID: 9973566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics and orientation of transmembrane peptide from bacteriorhodopsin incorporated into lipid bilayer as revealed by solid state (31)P and (13)C NMR spectroscopy.
    Kimura S; Naito A; Tuzi S; Saitô H
    Biopolymers; 2002 Feb; 63(2):122-31. PubMed ID: 11787000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural requirements for the inhibition of membrane fusion by carbobenzoxy-D-Phe-Phe-Gly.
    Epand RM; Epand RF; Richardson CD; Yeagle PL
    Biochim Biophys Acta; 1993 Oct; 1152(1):128-34. PubMed ID: 8399290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential scanning calorimetry and Fourier transform infrared spectroscopic studies of phospholipid organization and lipid-peptide interactions in nanoporous substrate-supported lipid model membranes.
    Alaouie AM; Lewis RN; McElhaney RN
    Langmuir; 2007 Jun; 23(13):7229-34. PubMed ID: 17530791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.