These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 9548962)
1. General base catalysis by the phosphatidylcholine-preferring phospholipase C from Bacillus cereus: the role of Glu4 and Asp55. Martin SF; Hergenrother PJ Biochemistry; 1998 Apr; 37(16):5755-60. PubMed ID: 9548962 [TBL] [Abstract][Full Text] [Related]
2. Expression and site-directed mutagenesis of the phosphatidylcholine-preferring phospholipase C of Bacillus cereus: probing the role of the active site Glu146. Martin SF; Spaller MR; Hergenrother PJ Biochemistry; 1996 Oct; 35(39):12970-7. PubMed ID: 8841144 [TBL] [Abstract][Full Text] [Related]
3. Using X-ray crystallography of the Asp55Asn mutant of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus to support the mechanistic role of Asp55 as the general base. Antikainen NM; Monzingo AF; Franklin CL; Robertus JD; Martin SF Arch Biochem Biophys; 2003 Sep; 417(1):81-6. PubMed ID: 12921783 [TBL] [Abstract][Full Text] [Related]
4. Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site. Antikainen NM; Hergenrother PJ; Harris MM; Corbett W; Martin SF Biochemistry; 2003 Feb; 42(6):1603-10. PubMed ID: 12578373 [TBL] [Abstract][Full Text] [Related]
5. The choline binding site of phospholipase C (Bacillus cereus): insights into substrate specificity. Martin SF; Follows BC; Hergenrother PJ; Trotter BK Biochemistry; 2000 Mar; 39(12):3410-5. PubMed ID: 10727235 [TBL] [Abstract][Full Text] [Related]
6. Catalytic cycle of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus. Solvent viscosity, deuterium isotope effects, and proton inventory studies. Martin SF; Hergenrother PJ Biochemistry; 1999 Apr; 38(14):4403-8. PubMed ID: 10194360 [TBL] [Abstract][Full Text] [Related]
7. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis. Cha J; Auld DS Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337 [TBL] [Abstract][Full Text] [Related]
8. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study. da Graça Thrige D; Buur JR; Jørgensen FS Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of phosphatidylinositol-specific phospholipase C: a unified view of the mechanism of catalysis. Hondal RJ; Zhao Z; Kravchuk AV; Liao H; Riddle SR; Yue X; Bruzik KS; Tsai MD Biochemistry; 1998 Mar; 37(13):4568-80. PubMed ID: 9521777 [TBL] [Abstract][Full Text] [Related]
10. Probing the roles of active site residues in phosphatidylinositol-specific phospholipase C from Bacillus cereus by site-directed mutagenesis. Gässler CS; Ryan M; Liu T; Griffith OH; Heinz DW Biochemistry; 1997 Oct; 36(42):12802-13. PubMed ID: 9335537 [TBL] [Abstract][Full Text] [Related]
11. Chromogenic assay for phospholipase C from Bacillus cereus. Hergenrother PJ; Spaller MR; Haas MK; Martin SF Anal Biochem; 1995 Aug; 229(2):313-6. PubMed ID: 7485988 [TBL] [Abstract][Full Text] [Related]
12. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327 [TBL] [Abstract][Full Text] [Related]
13. Engineering of the nonspecific phospholipase C from Bacillus cereus: replacement of glutamic acid-4 by alanine results in loss of interfacial catalysis and enhanced phosphomonoesterase activity. Tan CA; Roberts MF Biochemistry; 1998 Mar; 37(12):4275-9. PubMed ID: 9521750 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of phospholipase C from Bacillus cereus complexed with a substrate analog. Hansen S; Hough E; Svensson LA; Wong YL; Martin SF J Mol Biol; 1993 Nov; 234(1):179-87. PubMed ID: 8230197 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of active site residues of phosphite dehydrogenase. Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903 [TBL] [Abstract][Full Text] [Related]
16. [Properties of the phospholipases C from Bacillus cereus]. Gerasimene GB; Makariunaĭte IuP; Kulene VV; Glemzha AA; Ianulaĭtene KK Prikl Biokhim Mikrobiol; 1985; 21(2):184-9. PubMed ID: 3921953 [TBL] [Abstract][Full Text] [Related]
17. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
18. Glycosynthase activity of Bacillus licheniformis 1,3-1,4-beta-glucanase mutants: specificity, kinetics, and mechanism. Faijes M; Pérez X; Pérez O; Planas A Biochemistry; 2003 Nov; 42(45):13304-18. PubMed ID: 14609341 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli. Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050 [TBL] [Abstract][Full Text] [Related]
20. Kinetic analysis of the zinc-dependent deacetylase in the lipid A biosynthetic pathway. McClerren AL; Zhou P; Guan Z; Raetz CR; Rudolph J Biochemistry; 2005 Feb; 44(4):1106-13. PubMed ID: 15667204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]