These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 954901)

  • 1. Calcium uptake in preterminal central synapses: importance of mitochondria.
    Vickers GR; Dowdall MJ
    Exp Brain Res; 1976 Jun; 25(4):429-45. PubMed ID: 954901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of taurine and mitochondrial metabolic inhibitors on ATP-dependent Ca2+ uptake in synaptosomal and mitochondrial subcellular fractions of rat retina.
    Lombardini JB
    J Neurochem; 1988 Jul; 51(1):200-5. PubMed ID: 2454294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced calcium uptake by rat brain mitochondria and synaptosomes in response to aging.
    Leslie SW; Chandler LJ; Barr EM; Farrar RP
    Brain Res; 1985 Mar; 329(1-2):177-83. PubMed ID: 3978439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Botulinum toxin A blocks glutamate exocytosis from guinea-pig cerebral cortical synaptosomes.
    Sanchez-Prieto J; Sihra TS; Evans D; Ashton A; Dolly JO; Nicholls DG
    Eur J Biochem; 1987 Jun; 165(3):675-81. PubMed ID: 2439334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ.
    Scott ID; Nicholls DG
    Biochem J; 1980 Jan; 186(1):21-33. PubMed ID: 7370008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-stimulated glutamate-dependent calcium uptake by rat synaptosomes.
    Galzigna L; Bianchi M; Battistin T; Scarpa M; Rigo A
    Clin Chim Acta; 1992 Mar; 206(1-2):147-53. PubMed ID: 1572076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism.
    Blaustein MP; Ratzlaff RW; Kendrick NC; Schweitzer ES
    J Gen Physiol; 1978 Jul; 72(1):15-41. PubMed ID: 359758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium metabolism and enzyme secretion in guinea pig pancreas. Uptake, storage and release of calcium in whole cells and mitochondrial and microsomal fractions.
    Lucas M; Schmid G; Kromas R; Löffler G
    Eur J Biochem; 1978 Apr; 85(2):609-19. PubMed ID: 648536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can mitochondria and synaptosomes of guinea-pig brain synthesize phospholipids?
    Miller EK; Dawson RM
    Biochem J; 1972 Feb; 126(4):805-21. PubMed ID: 4342166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure of atractyloside to inhibit synaptosomal mitochondrial energy transduction.
    Verity MA; Brown WJ; Cheung MK
    Neurochem Res; 1983 Feb; 8(2):159-66. PubMed ID: 6856023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further characteristics of the ATP-stimulated uptake of calcium into chromaffin granules.
    Burger A; Niedermaier W; Langer R; Bode U
    J Neurochem; 1984 Sep; 43(3):806-15. PubMed ID: 6235324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of calcium ions by Ehrlich ascites-tumour cells.
    Landry Y; Lehninger AL
    Biochem J; 1976 Aug; 158(2):427-38. PubMed ID: 988829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptosomal calcium uptake systems: prostaglandins are probably not involved in the regulation of calcium fluxes into and within the nerve endings.
    Denzlinger C; Hertting G; Jackisch R
    J Neurochem; 1982 Aug; 39(2):499-506. PubMed ID: 7086430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-ion transport by intact synaptosomes. Intrasynaptosomal compartmentation and the role of the mitochondrial membrane potential.
    Scott ID; Akerman KE; Nicholls DG
    Biochem J; 1980 Dec; 192(3):873-80. PubMed ID: 7236243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-dependent and Ca2+-independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: possible relevance to hypoglycaemia and anoxia.
    Kauppinen RA; McMahon HT; Nicholls DG
    Neuroscience; 1988 Oct; 27(1):175-82. PubMed ID: 2904664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes.
    Sanchez-Prieto J; Sihra TS; Nicholls DG
    J Neurochem; 1987 Jul; 49(1):58-64. PubMed ID: 2884280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diazepam-stimulated increases in the synaptosomal uptake of 45Ca2+: reversal by dihydropyridine calcium channel antagonists.
    Mendelson WB; Skolnic P; Martin JV; Luu MD; Wagner R; Paul SM
    Eur J Pharmacol; 1984 Sep; 104(1-2):181-3. PubMed ID: 6499915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of mitochondrial inhibitors to differentiate kinetic properties of the ATP-dependent Ca2+ uptake system in synaptic membranes.
    Ross DH; Garrett KM; Cardenas HL
    Neurochem Res; 1985 Feb; 10(2):269-82. PubMed ID: 3990895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between synaptosomal calcium uptake and antinociceptive action of morphine.
    Konno F; Takayanagi I
    Jpn J Pharmacol; 1983 Jun; 33(3):619-26. PubMed ID: 6137584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium red inhibits the voltage-dependent increase in cytosolic free calcium in cortical synaptosomes from guinea-pig.
    Taipale HT; Kauppinen RA; Komulainen H
    Biochem Pharmacol; 1989 Apr; 38(7):1109-13. PubMed ID: 2468334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.