These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9549342)

  • 21. Administration strategies for proteins and peptides.
    Ibraheem D; Elaissari A; Fessi H
    Int J Pharm; 2014 Dec; 477(1-2):578-89. PubMed ID: 25445533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oral biodrug delivery using cell-penetrating peptide.
    Khafagy el-S; Morishita M
    Adv Drug Deliv Rev; 2012 May; 64(6):531-9. PubMed ID: 22245080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs.
    Wang XQ; Zhang Q
    Eur J Pharm Biopharm; 2012 Oct; 82(2):219-29. PubMed ID: 22885229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Some interactions of natural and synthetic anionic polymers with biologically active substances].
    Musiał W; Kubis AA
    Polim Med; 2005; 35(1):39-46. PubMed ID: 16050075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Approaches towards enhanced transepithelial drug delivery.
    Majumdar S; Mitra AK
    Discov Med; 2006 Dec; 6(36):229-33. PubMed ID: 17250788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trypsin inhibition, calcium and zinc ion binding of starch-g-poly(acrylic acid) copolymers and starch/poly(acrylic acid) mixtures for peroral peptide drug delivery.
    Ameye D; Voorspoels J; Foreman P; Tsai J; Richardson P; Geresh S; Remon JP
    J Control Release; 2001 Aug; 75(3):357-64. PubMed ID: 11489322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetically engineered normal flora for oral polypeptide delivery: dose-absorption response.
    Kaushal G; Shao J
    J Pharm Sci; 2009 Aug; 98(8):2573-80. PubMed ID: 19266563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent progress in protein and peptide delivery by noninvasive routes.
    Wearley LL
    Crit Rev Ther Drug Carrier Syst; 1991; 8(4):331-94. PubMed ID: 1769066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peroral peptide delivery: Peptidase inhibition as a key concept for commercial drug products.
    Werle M; Föger F
    Bioorg Med Chem; 2018 Jun; 26(10):2906-2913. PubMed ID: 28882504
    [No Abstract]   [Full Text] [Related]  

  • 30. Challenges in the delivery of peptide drugs: an industry perspective.
    Lewis AL; Richard J
    Ther Deliv; 2015 Feb; 6(2):149-63. PubMed ID: 25690084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of human insulin microcrystals and their absorption enhancement by protease inhibitors in rat lungs.
    Park SH; Kwon JH; Lim SH; Park HW; Kim CW
    Int J Pharm; 2007 Jul; 339(1-2):205-12. PubMed ID: 17451895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The oral delivery of peptides and proteins: established versus recently patented approaches.
    Rosenmayr-Templeton L
    Pharm Pat Anal; 2013 Jan; 2(1):125-45. PubMed ID: 24236975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Absorption of peptides and proteins from the respiratory tract and the potential for development of locally administered vaccine.
    O'Hagan DT; Illum L
    Crit Rev Ther Drug Carrier Syst; 1990; 7(1):35-97. PubMed ID: 2257636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel protease inhibitor-loaded Nanoparticle-in-Microparticle Delivery System leads to a dramatic improvement of the oral pharmacokinetics in dogs.
    Imperiale JC; Nejamkin P; Del Sole MJ; E Lanusse C; Sosnik A
    Biomaterials; 2015 Jan; 37():383-94. PubMed ID: 25453966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging strategies for the transdermal delivery of peptide and protein drugs.
    Schuetz YB; Naik A; Guy RH; Kalia YN
    Expert Opin Drug Deliv; 2005 May; 2(3):533-48. PubMed ID: 16296773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery.
    Su FY; Lin KJ; Sonaje K; Wey SP; Yen TC; Ho YC; Panda N; Chuang EY; Maiti B; Sung HW
    Biomaterials; 2012 Mar; 33(9):2801-11. PubMed ID: 22243802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thiolated chitosans: useful excipients for oral drug delivery.
    Werle M; Bernkop-Schnürch A
    J Pharm Pharmacol; 2008 Mar; 60(3):273-81. PubMed ID: 18284806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Permeability evaluation of peptidic HCV protease inhibitors in Caco-2 cells-correlation with in vivo absorption predicted in humans.
    Li C; Liu T; Broske L; Brisson JM; Uss AS; Njoroge FG; Morrison RA; Cheng KC
    Biochem Pharmacol; 2008 Dec; 76(12):1757-64. PubMed ID: 18835257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thiomers: potential excipients for non-invasive peptide delivery systems.
    Bernkop-Schnürch A; Krauland AH; Leitner VM; Palmberger T
    Eur J Pharm Biopharm; 2004 Sep; 58(2):253-63. PubMed ID: 15296953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delivery Systems for Antimicrobial Peptides and Proteins: Towards Optimization of Bioavailability and Targeting.
    Costa JR; Silva NC; Sarmento B; Pintado M
    Curr Pharm Biotechnol; 2017; 18(2):108-120. PubMed ID: 27924724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.