These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 9549891)
41. Spectroscopic and microcalorimetric studies on the molecular binding of food colorant acid red 27 with deoxyribonucleic acid. Basu A; Kumar GS J Mol Recognit; 2016 Aug; 29(8):363-9. PubMed ID: 26846192 [TBL] [Abstract][Full Text] [Related]
42. Conventional high-performance liquid chromatography versus derivative spectrophotometry for the determination of 1,3,6-pyrenetrisulfonic acid trisodium salt and 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt in the color additive D&C Green No. 8 (Pyranine). Jitian S; White SR; Yang HH; Weisz A J Chromatogr A; 2014 Jan; 1324():238-41. PubMed ID: 24315677 [TBL] [Abstract][Full Text] [Related]
43. Isolation, identification and determination of a magenta subsidiary colour in food blue no. 1 (brilliant blue FCF). Kusaka T; Matsufuji H; Chino M; Kato Y; Nakamura M; Goda Y; Toyoda M; Takeda M Food Addit Contam; 1999 Dec; 16(12):501-7. PubMed ID: 10789372 [TBL] [Abstract][Full Text] [Related]
44. Aqueous two-phase based on ionic liquid liquid-liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography. Sha O; Zhu X; Feng Y; Ma W Food Chem; 2015 May; 174():380-6. PubMed ID: 25529695 [TBL] [Abstract][Full Text] [Related]
45. [Determination and survey of hexachlorobenzene in food red nos. 104 (phloxine) and 105 (rose bengale) by GC/MS]. Umino Y; Tsuji S; Nakamura Y; Tonogai Y Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2002; (120):107-11. PubMed ID: 12638191 [TBL] [Abstract][Full Text] [Related]
46. Genotoxicity assessment of amaranth and allura red using Saccharomyces cerevisiae. Jabeen HS; ur Rahman S; Mahmood S; Anwer S Bull Environ Contam Toxicol; 2013 Jan; 90(1):22-6. PubMed ID: 23132362 [TBL] [Abstract][Full Text] [Related]
47. [Determination of indigo and brilliant blue in different types of food products by high performance liquid chromatography with solid phase extraction]. Li J; Huang C; Liang G; Xiao Y; Ge L; Gong J; He D Wei Sheng Yan Jiu; 2017 Mar; 46(2):318-323. PubMed ID: 29903114 [TBL] [Abstract][Full Text] [Related]
48. [Studies on rejected food blue no. 1 (Brilliant Blue FCF) aluminum lake]. Tsuji S; Okada M; Amakura Y; Tonogai Y Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2000; (118):131-4. PubMed ID: 11534113 [TBL] [Abstract][Full Text] [Related]
49. Determination of synthetic by-products and an intermediate in the colour additives D&C Red Nos 27 and 28 (phloxine B) and their lakes using conventional HPLC. Weisz A; Krantz ZB Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(6):979-84. PubMed ID: 24646430 [TBL] [Abstract][Full Text] [Related]
50. Lack of mutagenicity of a red food colour impurity (1-carboxyl-5,7-dibromo-6-hydroxy-2,3,4-trichloroxanthone) in phloxine B. Aoki H; Ogawa Y; Yukawa C; Nakamura M; Nakazawa H Food Addit Contam; 2002 Apr; 19(4):350-6. PubMed ID: 11962692 [TBL] [Abstract][Full Text] [Related]
51. Determination of the lower sulfonated subsidiary colors in FD&C Yellow No. 6 by reversed-phase high-performance liquid chromatography. Bailey JE J Chromatogr; 1985 Oct; 347(1):163-72. PubMed ID: 4086630 [TBL] [Abstract][Full Text] [Related]
52. Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection. Yoshioka N; Ichihashi K Talanta; 2008 Feb; 74(5):1408-13. PubMed ID: 18371797 [TBL] [Abstract][Full Text] [Related]
53. Structure determination of minor red pigment in carthamus red colorant isolated by preparative LC/MS. Sato K; Sugimoto N; Ohta M; Yamazaki T; Maitani T; Tanamoto K Food Addit Contam; 2003 Nov; 20(11):1015-22. PubMed ID: 14668152 [TBL] [Abstract][Full Text] [Related]
54. Determination of benzidine in the food colours tartrazine and sunset yellow FCF, by reduction and derivatization followed by high-performance liquid chromatography. Lancaster FE; Lawrence JF Food Addit Contam; 1999 Sep; 16(9):381-90. PubMed ID: 10755129 [TBL] [Abstract][Full Text] [Related]
55. Mutagenicity testing of certified food colors and related azo, xanthene and triphenylmethane dyes with the Salmonella/microsome system. Brown JP; Roehm GW; Brown RJ Mutat Res; 1978 Jan; 56(3):249-71. PubMed ID: 342943 [TBL] [Abstract][Full Text] [Related]
56. [A qualitative analytical method for nonpermitted food colors by HPLC]. Ishiwata H; Nagata M; Sekiguchi Y; Kamakura K; Sugita T; Yamada T Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 1998; (116):122-5. PubMed ID: 10097521 [TBL] [Abstract][Full Text] [Related]
57. [Use of computers for processing thin-layer chromatograms based on an example of red food dyes]. Gerasimov AV Vopr Pitan; 2000; 69(1-2):63-5. PubMed ID: 10943012 [TBL] [Abstract][Full Text] [Related]
58. Separation and recovery of food coloring dyes using aqueous biphasic extraction chromatographic resins. Huddleston JG; Willauer HD; Boaz KR; Rogers RD J Chromatogr B Biomed Sci Appl; 1998 Jun; 711(1-2):237-44. PubMed ID: 9699992 [TBL] [Abstract][Full Text] [Related]
59. Selective and sensitive spectrophotometric method to determine trace amounts of copper metal ions using Amaranth food dye. El-Zomrawy AA Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():450-454. PubMed ID: 29894959 [TBL] [Abstract][Full Text] [Related]
60. Exploration of binding of C.I. Food Red 9 with pepsin by optical spectroscopic and molecular docking methods. Wang YQ; Zhang HM Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():822-9. PubMed ID: 26001101 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]