These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 955001)
21. Androgen correlates of socially induced changes in the electric organ discharge waveform of a mormyrid fish. Carlson BA; Hopkins CD; Thomas P Horm Behav; 2000 Nov; 38(3):177-86. PubMed ID: 11038292 [TBL] [Abstract][Full Text] [Related]
22. Testosterone changes the electric organ discharge and external morphology of the mormyrid fish, Gnathonemus petersii (Mormyriformes). Landsman RE; Moller P Experientia; 1988 Oct; 44(10):900-3. PubMed ID: 3181377 [TBL] [Abstract][Full Text] [Related]
23. Effects of hypoxia on aerobic metabolism and active electrosensory acquisition in the African weakly electric fish Marcusenius victoriae. Moulton TL; Chapman LJ; Krahe R J Fish Biol; 2020 Feb; 96(2):496-505. PubMed ID: 31845335 [TBL] [Abstract][Full Text] [Related]
24. Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes. Arnegard ME; Jackson BS; Hopkins CD J Exp Biol; 2006 Jun; 209(Pt 11):2182-98. PubMed ID: 16709920 [TBL] [Abstract][Full Text] [Related]
25. The emergence of tuning in newly generated tuberous electroreceptors. Zakon HH J Neurosci; 1986 Nov; 6(11):3297-308. PubMed ID: 3772432 [TBL] [Abstract][Full Text] [Related]
26. A model for studying the energetics of sustained high frequency firing. Joos B; Markham MR; Lewis JE; Morris CE PLoS One; 2018; 13(4):e0196508. PubMed ID: 29708986 [TBL] [Abstract][Full Text] [Related]
27. Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia. Heiligenberg W; Rose G J Neurosci; 1985 Feb; 5(2):515-31. PubMed ID: 3973680 [TBL] [Abstract][Full Text] [Related]
28. Nonlinear response properties of combination-sensitive electrosensory neurons in the midbrain of Gymnarchus niloticus. Carlson BA; Kawasaki M J Neurosci; 2004 Sep; 24(37):8039-48. PubMed ID: 15371504 [TBL] [Abstract][Full Text] [Related]
29. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish. Kolodziejski JA; Nelson BS; Smith GT J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000 [TBL] [Abstract][Full Text] [Related]
30. Androgen modulates the kinetics of the delayed rectifying K+ current in the electric organ of a weakly electric fish. McAnelly ML; Zakon HH Dev Neurobiol; 2007 Oct; 67(12):1589-97. PubMed ID: 17562532 [TBL] [Abstract][Full Text] [Related]
31. The evolutionary origins of electric signal complexity. Stoddard PK J Physiol Paris; 2002; 96(5-6):485-91. PubMed ID: 14692496 [TBL] [Abstract][Full Text] [Related]
32. Patterns of electric organ discharge activity in the weakly electric fish Brienomyrus niger L. (Mormyridae). Serrier J; Moller P Exp Biol; 1989; 48(5):235-44. PubMed ID: 2620705 [TBL] [Abstract][Full Text] [Related]
34. Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry. Arnegard ME; Bogdanowicz SM; Hopkins CD Evolution; 2005 Feb; 59(2):324-43. PubMed ID: 15807419 [TBL] [Abstract][Full Text] [Related]
35. Environmental, seasonal, and social modulations of basal activity in a weakly electric fish. Silva A; Perrone R; Macadar O Physiol Behav; 2007 Feb; 90(2-3):525-36. PubMed ID: 17178133 [TBL] [Abstract][Full Text] [Related]
36. Weakly electric fish as model systems for studying long-term steroid action on neural circuits. Zakon HH Brain Behav Evol; 1993; 42(4-5):242-51. PubMed ID: 8252376 [TBL] [Abstract][Full Text] [Related]
37. Electroreceptor model of weakly electric fish Gnathonemus petersii: II. Cellular origin of inverse waveform tuning. Shuai J; Kashimori Y; Hoshino O; Kambara T; Emde G Biophys J; 1999 Jun; 76(6):3012-25. PubMed ID: 10354427 [TBL] [Abstract][Full Text] [Related]
38. Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus. Kawasaki M J Comp Physiol A; 1993 Jul; 173(1):9-22. PubMed ID: 8366474 [TBL] [Abstract][Full Text] [Related]
39. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish. Sinnett PM; Markham MR Horm Behav; 2015 May; 71():31-40. PubMed ID: 25870018 [TBL] [Abstract][Full Text] [Related]
40. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus. Dunlap KD; Ragazzi MA Physiol Behav; 2015 Nov; 151():64-71. PubMed ID: 26143349 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]