BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

817 related articles for article (PubMed ID: 9550137)

  • 1. Actual problems of the cerebrospinal fluid-contacting neurons.
    Vigh B; Vigh-Teichmann I
    Microsc Res Tech; 1998 Apr; 41(1):57-83. PubMed ID: 9550137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain.
    Vígh B; Manzano e Silva MJ; Frank CL; Vincze C; Czirok SJ; Szabó A; Lukáts A; Szél A
    Histol Histopathol; 2004 Apr; 19(2):607-28. PubMed ID: 15024719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The system of cerebrospinal fluid-contacting neurons.
    Vigh-Teichmann I; Vigh B
    Arch Histol Jpn; 1983 Sep; 46(4):427-68. PubMed ID: 6362609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning and transmission electron microscopy of intraventricular dendrite terminals of hypothalamic cerebrospinal fluid contacting neurons in Triturus vulgaris.
    Vigh-Teichmann I; Vigh B; Aros B; Jennes L; Sikora K; Kovács J
    Z Mikrosk Anat Forsch; 1979; 93(4):609-42. PubMed ID: 524982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebrospinal fluid contacting neurons in the reduced brain ventricular system of the atlantic hagfish, Myxine glutinosa.
    Dávid C; Frank CL; Lukáts A; Szél A; Vígh B
    Acta Biol Hung; 2003; 54(1):35-44. PubMed ID: 12705320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cerebrospinal fluid-contacting neuron: a peculiar cell type of the central nervous system. Immunocytochemical aspects.
    Vigh-Teichmann I; Vigh B
    Arch Histol Cytol; 1989; 52 Suppl():195-207. PubMed ID: 2479402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochemistry of CSF-contacting neurons and pinealocytes.
    Vigh B; Vigh-Teichmann I
    Prog Brain Res; 1992; 91():299-306. PubMed ID: 1410413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vasoactive intestinal polypeptide cerebrospinal fluid-contacting neurons of the monkey and cat spinal central canal.
    LaMotte CC
    J Comp Neurol; 1987 Apr; 258(4):527-41. PubMed ID: 2438312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of dopamine-immunoreactive neuronal perikarya and fibres in the brain of a teleost, Gasterosteus aculeatus L. comparison with tyrosine hydroxylase- and dopamine-beta-hydroxylase-immunoreactive neurons.
    Ekström P; Honkanen T; Steinbusch HW
    J Chem Neuroanat; 1990; 3(4):233-60. PubMed ID: 1975745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonvisual photoreceptors of the deep brain, pineal organs and retina.
    Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C
    Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebrospinal fluid-contacting neurons of the central canal and terminal ventricle in various vertebrates.
    Vigh B; Vigh-Teichmann I; Manzano e Silva MJ; van den Pol AN
    Cell Tissue Res; 1983; 231(3):615-21. PubMed ID: 6871973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of aminergic neurons in the brain of the sterlet, Acipenser ruthenus (Chondrostei, Actinopterygii).
    Kotrschal K; Krautgartner WD; Adam H
    J Hirnforsch; 1985; 26(1):65-72. PubMed ID: 2859310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the ultrastructure and opsin immunocytochemistry of the pineal organ and retina of the deep-sea fish Chimaera monstrosa.
    Vigh-Teichmann I; Szél A; Röhlich P; Vigh B
    Exp Biol; 1990; 48(6):361-71. PubMed ID: 2142101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of epithalamic, hypothalamic and spinal neurosecretory terminals.
    Vigh-Teichmann I; Vigh B
    Acta Biol Acad Sci Hung; 1979; 30(1):1-39. PubMed ID: 399140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Special dendritic and axonal endings formed by the cerebrospinal fluid contacting neurons of the spinal cord.
    Vigh B; Vigh-Teichmann I; Aros B
    Cell Tissue Res; 1977 Oct; 183(4):541-52. PubMed ID: 922853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal organization of the avian paraventricular nucleus: intrinsic, afferent, and efferent connections.
    Korf HW
    J Exp Zool; 1984 Dec; 232(3):387-95. PubMed ID: 6084042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunocytochemistry and calcium cytochemistry of the mammalian pineal organ: a comparison with retina and submammalian pineal organs.
    Vigh-Teichmann I; Vigh B
    Microsc Res Tech; 1992 May; 21(3):227-41. PubMed ID: 1351408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSF-contacting pinealocytes in the pineal recess of the Mongolian gerbil: a correlative scanning and transmission electron microscope study.
    Welsh MG
    Am J Anat; 1983 Apr; 166(4):483-93. PubMed ID: 6858943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative ultrastructure of cerebrospinal fluid-contacting neurons and pinealocytes.
    Vigh B; Vigh-Teichmann I; Aros B
    Cell Tissue Res; 1975; 158(3):409-24. PubMed ID: 807327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The cerebrospinal fluid contact processes in the central canal of the spinal cord. A scanning and transmission electron microscopic study of the rabbit].
    Leonhardt H
    Z Mikrosk Anat Forsch; 1976; 90(1):1-15. PubMed ID: 1020415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.