These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9550183)

  • 1. Kinetics of the "black hole" phenomenon in ultrasound backscattering measurements with red blood cell aggregation.
    Qin Z; Durand LG; Cloutier G
    Ultrasound Med Biol; 1998 Feb; 24(2):245-56. PubMed ID: 9550183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The "black hole" phenomenon in ultrasonic backscattering measurement under pulsatile flow with porcine whole blood in a rigid tube.
    Cao PJ; Paeng DG; Shung KK
    Biorheology; 2001; 38(1):15-26. PubMed ID: 11381162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power.
    Qin Z; Durand LG; Allard L; Cloutier G
    Ultrasound Med Biol; 1998 May; 24(4):503-11. PubMed ID: 9651960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo observation of the hypo-echoic "black hole" phenomenon in rat arterial bloodstream: a preliminary Study.
    Nam KH; Paeng DG
    Ultrasound Med Biol; 2014 Jul; 40(7):1619-28. PubMed ID: 24785440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound backscattering from non-aggregating and aggregating erythrocytes--a review.
    Cloutier G; Qin Z
    Biorheology; 1997; 34(6):443-70. PubMed ID: 9640358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear rate dependence of ultrasound backscattering from blood samples characterized by different levels of erythrocyte aggregation.
    Cloutier G; Qin Z
    Ann Biomed Eng; 2000 Apr; 28(4):399-407. PubMed ID: 10870896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power Doppler ultrasound evaluation of the shear rate and shear stress dependences of red blood cell aggregation.
    Cloutier G; Qin Z; Durand LG; Teh BG
    IEEE Trans Biomed Eng; 1996 May; 43(5):441-50. PubMed ID: 8849457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental ultrasound characterization of red blood cell aggregation using the structure factor size estimator.
    Yu FT; Cloutier G
    J Acoust Soc Am; 2007 Jul; 122(1):645-56. PubMed ID: 17614521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting spatial variations of erythrocytes by ultrasound backscattering statistical parameters under pulsatile flow.
    Huang CC
    IEEE Trans Biomed Eng; 2011 May; 58(5):1163-71. PubMed ID: 21134805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power Doppler ultrasound scan imaging of the level of red blood cell aggregation: an in vitro study.
    Allard L; Cloutier G
    J Vasc Surg; 1999 Jul; 30(1):157-68. PubMed ID: 10394166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doppler power variation from porcine blood under steady and pulsatile flow.
    Paeng DG; Cao PJ; Shung KK
    Ultrasound Med Biol; 2001 Sep; 27(9):1245-54. PubMed ID: 11597366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the frequency dependence (5-120 MHz) of ultrasound backscattering by red cell aggregates in shear flow at a normal hematocrit.
    Fontaine I; Cloutier G
    J Acoust Soc Am; 2003 May; 113(5):2893-900. PubMed ID: 12765406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic and radial variation of the Doppler power from porcine whole blood.
    Paeng DG; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):614-22. PubMed ID: 12839173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of rheology of red blood cell rouleaux in microchannels.
    Wang T; Pan TW; Xing ZW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041916. PubMed ID: 19518265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood.
    Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N
    Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of red blood cell aggregation in shear flow.
    Lim B; Bascom PA; Cobbold RS
    Biorheology; 1997; 34(6):423-41. PubMed ID: 9640357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The intensity reflection coefficient: a complementary method for investigating blood backscattering properties with ultrasound.
    Amararene A; Cloutier G
    Clin Hemorheol Microcirc; 2008; 38(3):189-200. PubMed ID: 18239261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood rheology during normal pregnancy.
    Tsikouras P; Niesigk B; von Tempelhoff GF; Rath W; Schelkunov O; Daragó P; Csorba R
    Clin Hemorheol Microcirc; 2018; 69(1-2):101-114. PubMed ID: 29758932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.
    Huang CC
    Phys Med Biol; 2010 Oct; 55(19):5801-15. PubMed ID: 20844333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of red cell aggregation in pulsatile flow from ultrasonic Doppler power measurements.
    Cloutier G; Shung KK
    Biorheology; 1993; 30(5-6):443-61. PubMed ID: 8186410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.