These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 955063)
41. Novel isolation of ubiquinone-binding proteins located in different sites of beef heart mitochondrial respiratory chain. Suzuki H; Ozawa T Biochem Int; 1984 Nov; 9(5):563-8. PubMed ID: 6525194 [TBL] [Abstract][Full Text] [Related]
42. Free radical imaging of endogenous redox molecules using dynamic nuclear polarization magnetic resonance imaging. Hyodo F; Ito S; Eto H; Elhelaly AE; Murata M; Akahoshi T; Utsumi H; Matuso M Free Radic Res; 2021 Apr; 55(4):343-351. PubMed ID: 33307891 [TBL] [Abstract][Full Text] [Related]
43. Mechanism of O2- generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Sugioka K; Nakano M; Totsune-Nakano H; Minakami H; Tero-Kubota S; Ikegami Y Biochim Biophys Acta; 1988 Dec; 936(3):377-85. PubMed ID: 2848580 [TBL] [Abstract][Full Text] [Related]
44. Reversible inhibition of electron transfer in the ubiquinol. Cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels. Brustovetsky NN; Amerkhanov ZG; Popova EYu ; Konstantinov AA FEBS Lett; 1990 Apr; 263(1):73-6. PubMed ID: 2332054 [TBL] [Abstract][Full Text] [Related]
45. From NADH to ubiquinone in Neurospora mitochondria. Videira A; Duarte M Biochim Biophys Acta; 2002 Sep; 1555(1-3):187-91. PubMed ID: 12206913 [TBL] [Abstract][Full Text] [Related]
46. Reduction of mitochondrial components by durohydroquinone. Boveris A; Oshino R; Erecińska M; Chance B Biochim Biophys Acta; 1971 Aug; 245(1):1-16. PubMed ID: 5132471 [No Abstract] [Full Text] [Related]
47. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Plecitá-Hlavatá L; Jezek J; Jezek P Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311 [TBL] [Abstract][Full Text] [Related]
48. Influence of ubiquinone on the rate of antimycin binding to submitochondrial particles. Nelson BD; Norling B; Persson B; Ernster L Biochim Biophys Acta; 1972 Apr; 267(1):205-10. PubMed ID: 5019473 [No Abstract] [Full Text] [Related]
49. Electron flux through the mitochondrial ubiquinone. Gutman M Biochim Biophys Acta; 1980 Dec; 594(1):53-84. PubMed ID: 7006698 [No Abstract] [Full Text] [Related]
50. Maesaquinone: a novel inhibitor of plant mitochondrial respiratory enzymes that react with ubiquinone. Affourtit C; Whitehouse DG; Moore AL IUBMB Life; 2000 Jun; 49(6):533-7. PubMed ID: 11032248 [TBL] [Abstract][Full Text] [Related]
51. Free-living nematodes Caenorhabditis elegans possess in their mitochondria an additional rhodoquinone, an essential component of the eukaryotic fumarate reductase system. Takamiya S; Matsui T; Taka H; Murayama K; Matsuda M; Aoki T Arch Biochem Biophys; 1999 Nov; 371(2):284-9. PubMed ID: 10545216 [TBL] [Abstract][Full Text] [Related]
52. Secondary electron transfer in chromatophores of Rhodopseudomonas capsulata A1a pho. Binary out-of-phase oscillations in ubisemiauinone formation and cytochrome b50 reduction with consective light flashes. Bowyer JR; Tierney GV; Crofts AR FEBS Lett; 1979 May; 101(1):201-6. PubMed ID: 446736 [No Abstract] [Full Text] [Related]
53. On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri. Kröger A; Dadák V; Klingenberg M; Diemer F Eur J Biochem; 1971 Aug; 21(3):322-33. PubMed ID: 4328123 [No Abstract] [Full Text] [Related]
54. The correlation of chemical and osmotic forces in biochemistry. Mitchell P J Biochem; 1985 Jan; 97(1):1-18. PubMed ID: 2581936 [No Abstract] [Full Text] [Related]
55. The electron transport system of Acetobacter suboxydans with particular reference to cytochrome. Daniel RM Biochim Biophys Acta; 1970 Sep; 216(2):328-41. PubMed ID: 5504630 [No Abstract] [Full Text] [Related]
56. Studies on a stabilisation of ubisemiquinone by Escherichia coli quinol oxidase, cytochrome bo. Ingledew WJ; Ohnishi T; Salerno JC Eur J Biochem; 1995 Feb; 227(3):903-8. PubMed ID: 7867653 [TBL] [Abstract][Full Text] [Related]
57. The function of the respiratory supercomplexes: the plasticity model. Acin-Perez R; Enriquez JA Biochim Biophys Acta; 2014 Apr; 1837(4):444-50. PubMed ID: 24368156 [TBL] [Abstract][Full Text] [Related]
58. Studies on the mechanism of inhibitionof the mitochondrial electron transport by antimycin. II. Antimycin as an allosteric inhibitor. Bryla J; Kaniuga Z; Slater EC Biochim Biophys Acta; 1969; 189(3):317-26. PubMed ID: 4312199 [No Abstract] [Full Text] [Related]
59. The mobility of a fluorescent ubiquinone in model lipid membranes. Relevance to mitochondrial electron transport. Chazotte B; Wu ES; Hackenbrock CR Biochim Biophys Acta; 1991 Jul; 1058(3):400-9. PubMed ID: 2065063 [TBL] [Abstract][Full Text] [Related]
60. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain. Frerman FE Biochim Biophys Acta; 1987 Sep; 893(2):161-9. PubMed ID: 3620453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]