These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 9551425)

  • 1. Cellular/molecular control of renal Na/Pi-cotransport.
    Murer H; Forster I; Hilfiker H; Pfister M; Kaissling B; Lötscher M; Biber J
    Kidney Int Suppl; 1998 Apr; 65():S2-10. PubMed ID: 9551425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of proximal tubular apical Na/Pi cotransport.
    Murer H; Biber J
    Exp Nephrol; 1996; 4(4):201-4. PubMed ID: 8864723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Regulation of phosphate balance in the kidney].
    Inishi Y; Hase H
    Clin Calcium; 2005 Jul; 15(7):115-8. PubMed ID: 15995306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization.
    Tenenhouse HS; Werner A; Biber J; Ma S; Martel J; Roy S; Murer H
    J Clin Invest; 1994 Feb; 93(2):671-6. PubMed ID: 8113402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Npt2 gene disruption confers resistance to the inhibitory action of parathyroid hormone on renal sodium-phosphate cotransport.
    Zhao N; Tenenhouse HS
    Endocrinology; 2000 Jun; 141(6):2159-65. PubMed ID: 10830304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of renal apical Na/phosphate cotransport.
    Murer H; Biber J
    Annu Rev Physiol; 1996; 58():607-18. PubMed ID: 8815811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel aspects in regulated expression of the renal type IIa Na/Pi-cotransporter.
    Bacic D; Wagner CA; Hernando N; Kaissling B; Biber J; Murer H
    Kidney Int Suppl; 2004 Oct; (91):S5-S12. PubMed ID: 15461703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter.
    Miyamoto K; Ito M; Tatsumi S; Kuwahata M; Segawa H
    Am J Nephrol; 2007; 27(5):503-15. PubMed ID: 17687185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal brush border membrane Na/Pi-cotransport: molecular aspects in PTH-dependent and dietary regulation.
    Murer H; Lötscher M; Kaissling B; Levi M; Kempson SA; Biber J
    Kidney Int; 1996 Jun; 49(6):1769-73. PubMed ID: 8743494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney.
    Bacic D; Schulz N; Biber J; Kaissling B; Murer H; Wagner CA
    Pflugers Arch; 2003 Apr; 446(1):52-60. PubMed ID: 12690463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet.
    Segawa H; Yamanaka S; Ito M; Kuwahata M; Shono M; Yamamoto T; Miyamoto K
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F587-96. PubMed ID: 15561978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II.
    Keusch I; Traebert M; Lötscher M; Kaissling B; Murer H; Biber J
    Kidney Int; 1998 Oct; 54(4):1224-32. PubMed ID: 9767538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The renal type IIa Na/Pi cotransporter: structure-function relationships.
    Murer H; Köhler K; Lambert G; Stange G; Biber J; Forster I
    Cell Biochem Biophys; 2002; 36(2-3):215-20. PubMed ID: 12139407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms in the regulation of renal proximal tubular Na/phosphate cotransport.
    Murer H; Lötscher M; Kaissling B; Biber J
    Kidney Blood Press Res; 1996; 19(3-4):151-4. PubMed ID: 8887250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content.
    Lötscher M; Kaissling B; Biber J; Murer H; Levi M
    J Clin Invest; 1997 Mar; 99(6):1302-12. PubMed ID: 9077540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ischemia-reperfusion on the renal brush-border membrane sodium-dependent phosphate cotransporter NaPi-2.
    Xiao Y; Desrosiers RR; Beliveau R
    Can J Physiol Pharmacol; 2001 Mar; 79(3):206-12. PubMed ID: 11294596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Npt2 gene ablation and low-phosphate diet on renal Na(+)/phosphate cotransport and cotransporter gene expression.
    Hoag HM; Martel J; Gauthier C; Tenenhouse HS
    J Clin Invest; 1999 Sep; 104(6):679-86. PubMed ID: 10491403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+ -phosphate cotransport in mouse distal convoluted tubule cells: evidence for Glvr-1 and Ram-1 gene expression.
    Tenenhouse HS; Gauthier C; Martel J; Gesek FA; Coutermarsh BA; Friedman PA
    J Bone Miner Res; 1998 Apr; 13(4):590-7. PubMed ID: 9556059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of a farnesylated protein with renal type IIa Na/Pi co-transporter in response to parathyroid hormone and dietary phosphate.
    Ito M; Iidawa S; Izuka M; Haito S; Segawa H; Kuwahata M; Ohkido I; Ohno H; Miyamoto K
    Biochem J; 2004 Feb; 377(Pt 3):607-16. PubMed ID: 14558883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.