These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 9551644)
1. A method for examining the chemical basis for bone disease: synchrotron infrared microspectroscopy. Miller LM; Carlson CS; Carr GL; Chance MR Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):117-27. PubMed ID: 9551644 [TBL] [Abstract][Full Text] [Related]
2. Examination of bone chemical composition in osteoporosis using fluorescence-assisted synchrotron infrared microspectroscopy. Miller LM; Tibrewala J; Carlson CS Cell Mol Biol (Noisy-le-grand); 2000 Sep; 46(6):1035-44. PubMed ID: 10976861 [TBL] [Abstract][Full Text] [Related]
3. Rapid establishment of chemical and mechanical properties during lamellar bone formation. Busa B; Miller LM; Rubin CT; Qin YX; Judex S Calcif Tissue Int; 2005 Dec; 77(6):386-94. PubMed ID: 16362460 [TBL] [Abstract][Full Text] [Related]
4. Ultraspatially-resolved synchrotron infrared microspectroscopy of plant tissue in situ. Wetzel DL; Eilert AJ; Pietrzak LN; Miller SS; Sweat JA Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):145-68. PubMed ID: 9551647 [TBL] [Abstract][Full Text] [Related]
5. Alterations in mineral composition observed in osteoarthritic joints of cynomolgus monkeys. Miller LM; Novatt JT; Hamerman D; Carlson CS Bone; 2004 Aug; 35(2):498-506. PubMed ID: 15268902 [TBL] [Abstract][Full Text] [Related]
6. Chemical makeup of microdamaged bone differs from undamaged bone. Ruppel ME; Burr DB; Miller LM Bone; 2006 Aug; 39(2):318-24. PubMed ID: 16584933 [TBL] [Abstract][Full Text] [Related]
7. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Fuchs RK; Allen MR; Ruppel ME; Diab T; Phipps RJ; Miller LM; Burr DB Matrix Biol; 2008 Jan; 27(1):34-41. PubMed ID: 17884405 [TBL] [Abstract][Full Text] [Related]
8. Structural studies of the mineral phase of calcifying cartilage. Rey C; Beshah K; Griffin R; Glimcher MJ J Bone Miner Res; 1991 May; 6(5):515-25. PubMed ID: 2068959 [TBL] [Abstract][Full Text] [Related]
9. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Boskey AL; Spevak L; Paschalis E; Doty SB; McKee MD Calcif Tissue Int; 2002 Aug; 71(2):145-54. PubMed ID: 12073157 [TBL] [Abstract][Full Text] [Related]
10. Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues. Garidel P; Boese M Microsc Res Tech; 2007 Apr; 70(4):336-49. PubMed ID: 17262783 [TBL] [Abstract][Full Text] [Related]
11. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration. Miller LM; Vairavamurthy V; Chance MR; Mendelsohn R; Paschalis EP; Betts F; Boskey AL Biochim Biophys Acta; 2001 Jul; 1527(1-2):11-9. PubMed ID: 11420138 [TBL] [Abstract][Full Text] [Related]
13. Accretion of bone quantity and quality in the developing mouse skeleton. Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847 [TBL] [Abstract][Full Text] [Related]
14. Chemical imaging of microstructures of plant tissues within cellular dimension using synchrotron infrared microspectroscopy. Yu P; McKinnon JJ; Christensen CR; Christensen DA; Marinkovic NS; Miller LM J Agric Food Chem; 2003 Sep; 51(20):6062-7. PubMed ID: 13129317 [TBL] [Abstract][Full Text] [Related]
15. High-spatial-resolution mapping of superhydrophobic cicada wing surface chemistry using infrared microspectroscopy and infrared imaging at two synchrotron beamlines. Tobin MJ; Puskar L; Hasan J; Webb HK; Hirschmugl CJ; Nasse MJ; Gervinskas G; Juodkazis S; Watson GS; Watson JA; Crawford RJ; Ivanova EP J Synchrotron Radiat; 2013 May; 20(Pt 3):482-9. PubMed ID: 23592628 [TBL] [Abstract][Full Text] [Related]
16. Chemical imaging of nucleic acids, proteins and lipids of a single living cell. Application of synchrotron infrared microspectrometry in cell biology. Jamin N; Dumas P; Moncuit J; Fridman WH; Teillaud JL; Carr GL; Williams GP Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):9-13. PubMed ID: 9551633 [TBL] [Abstract][Full Text] [Related]
17. Fixation protocols for subcellular imaging by synchrotron-based Fourier transform infrared microspectroscopy. Gazi E; Dwyer J; Lockyer NP; Miyan J; Gardner P; Hart C; Brown M; Clarke NW Biopolymers; 2005 Jan; 77(1):18-30. PubMed ID: 15558657 [TBL] [Abstract][Full Text] [Related]
18. Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure: comparison with other feed protein sources. Yu P; McKinnon JJ; Christensen CR; Christensen DA J Agric Food Chem; 2004 Dec; 52(24):7353-61. PubMed ID: 15563219 [TBL] [Abstract][Full Text] [Related]
19. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980 [TBL] [Abstract][Full Text] [Related]
20. Aleurone cell walls of wheat grain: high spatial resolution investigation using synchrotron infrared microspectroscopy. Jamme F; Robert P; Bouchet B; Saulnier L; Dumas P; Guillon F Appl Spectrosc; 2008 Aug; 62(8):895-900. PubMed ID: 18702863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]