These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 9552158)
1. Modeling of inhibitor-metalloenzyme interactions and selectivity using molecular mechanics grounded in quantum chemistry. Garmer DR; Gresh N; Roques BP Proteins; 1998 Apr; 31(1):42-60. PubMed ID: 9552158 [TBL] [Abstract][Full Text] [Related]
2. Binding of 5-phospho-D-arabinonohydroxamate and 5-phospho-D-arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics. Roux C; Gresh N; Perera LE; Piquemal JP; Salmon L J Comput Chem; 2007 Apr; 28(5):938-57. PubMed ID: 17253648 [TBL] [Abstract][Full Text] [Related]
3. Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown. Gresh N; Perahia D; de Courcy B; Foret J; Roux C; El-Khoury L; Piquemal JP; Salmon L J Comput Chem; 2016 Dec; 37(32):2770-2782. PubMed ID: 27699809 [TBL] [Abstract][Full Text] [Related]
4. Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions. Gresh N Curr Pharm Des; 2006; 12(17):2121-58. PubMed ID: 16796560 [TBL] [Abstract][Full Text] [Related]
5. Conformation-dependent intermolecular interaction energies of the triphosphate anion with divalent metal cations. Application to the ATP-binding site of a binuclear bacterial enzyme. A parallel quantum chemical and polarizable molecular mechanics investigation. Gresh N; Shi GB J Comput Chem; 2004 Jan; 25(2):160-8. PubMed ID: 14648615 [TBL] [Abstract][Full Text] [Related]
6. Polarizable molecular mechanics studies of Cu(I)/Zn(II) superoxide dismutase: bimetallic binding site and structured waters. Gresh N; El Hage K; Perahia D; Piquemal JP; Berthomieu C; Berthomieu D J Comput Chem; 2014 Nov; 35(29):2096-106. PubMed ID: 25212748 [TBL] [Abstract][Full Text] [Related]
7. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics. Antony J; Gresh N; Olsen L; Hemmingsen L; Schofield CJ; Bauer R J Comput Chem; 2002 Oct; 23(13):1281-96. PubMed ID: 12210153 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of human macrophage elastase (MMP-12) in complex with a hydroxamic acid inhibitor. Nar H; Werle K; Bauer MM; Dollinger H; Jung B J Mol Biol; 2001 Sep; 312(4):743-51. PubMed ID: 11575929 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the interactions taking place in the recognition site of a bimetallic Mg(II)-Zn(II) enzyme, isopentenyl diphosphate isomerase. a parallel quantum-chemical and polarizable molecular mechanics study. Gresh N; Audiffren N; Piquemal JP; de Ruyck J; Ledecq M; Wouters J J Phys Chem B; 2010 Apr; 114(14):4884-95. PubMed ID: 20329783 [TBL] [Abstract][Full Text] [Related]
10. Hydroxamate-based peptide inhibitors of matrix metalloprotease 2. Jani M; Tordai H; Trexler M; Bányai L; Patthy L Biochimie; 2005; 87(3-4):385-92. PubMed ID: 15781326 [TBL] [Abstract][Full Text] [Related]
11. Specific interactions and binding energies between thermolysin and potent inhibitors: molecular simulations based on ab initio molecular orbital method. Hirakawa T; Fujita S; Ohyama T; Dedachi K; Khan MT; Sylte I; Kurita N J Mol Graph Model; 2012 Mar; 33():1-11. PubMed ID: 22112671 [TBL] [Abstract][Full Text] [Related]
12. Tertiary-Amine-Based Inhibitors of the Astacin Protease Meprin α. Tan K; Jäger C; Schlenzig D; Schilling S; Buchholz M; Ramsbeck D ChemMedChem; 2018 Aug; 13(16):1619-1624. PubMed ID: 29927060 [TBL] [Abstract][Full Text] [Related]
13. Examination of novel zinc-binding groups for use in matrix metalloproteinase inhibitors. Puerta DT; Cohen SM Inorg Chem; 2003 Jun; 42(11):3423-30. PubMed ID: 12767177 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of membrane-type 1 matrix metalloproteinase by hydroxamate inhibitors: an examination of the subsite pocket. Yamamoto M; Tsujishita H; Hori N; Ohishi Y; Inoue S; Ikeda S; Okada Y J Med Chem; 1998 Apr; 41(8):1209-17. PubMed ID: 9548812 [TBL] [Abstract][Full Text] [Related]
15. Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans. Monzingo AF; Matthews BW Biochemistry; 1982 Jul; 21(14):3390-4. PubMed ID: 7052122 [TBL] [Abstract][Full Text] [Related]
16. Designing Hydroxamates and Reversed Hydroxamates to Inhibit Zinc-containing Proteases but not Cytochrome P450s: Insights from Quantum Mechanics and Protein-ligand Crystal Structures. Barker C; Lukac I; Leach AG Mol Inform; 2015 Sep; 34(9):608-14. PubMed ID: 27490712 [TBL] [Abstract][Full Text] [Related]
17. Reversed hydroxamate-bearing thermolysin inhibitors mimic a high-energy intermediate along the enzyme-catalyzed proteolytic reaction pathway. Park JD; Kim DH Bioorg Med Chem Lett; 2003 Oct; 13(19):3161-6. PubMed ID: 12951085 [TBL] [Abstract][Full Text] [Related]
18. Calibration of 1,2,4-Triazole-3-Thione, an Original Zn-Binding Group of Metallo-β-Lactamase Inhibitors. Validation of a Polarizable MM/MD Potential by Quantum Chemistry. Kwapien K; Damergi M; Nader S; El Khoury L; Hobaika Z; Maroun RG; Piquemal JP; Gavara L; Berthomieu D; Hernandez JF; Gresh N J Phys Chem B; 2017 Jul; 121(26):6295-6312. PubMed ID: 28574718 [TBL] [Abstract][Full Text] [Related]
19. Interactions of a new alpha-aminophosphinic derivative inside the active site of TLN (thermolysin): a model for zinc-metalloendopeptidase inhibition. Selkti M; Tomas A; Gaucher JF; Prangé T; Fournié-Zaluski MC; Chen H; Roques BP Acta Crystallogr D Biol Crystallogr; 2003 Jul; 59(Pt 7):1200-5. PubMed ID: 12832763 [TBL] [Abstract][Full Text] [Related]
20. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum chemistry. Antony J; Piquemal JP; Gresh N J Comput Chem; 2005 Aug; 26(11):1131-47. PubMed ID: 15937993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]