These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9552166)

  • 1. A detached branch stops being recognized as self by other branches of a neuron.
    Wang H; Macagno ER
    J Neurobiol; 1998 Apr; 35(1):53-64. PubMed ID: 9552166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The establishment of peripheral sensory arbors in the leech: in vivo time-lapse studies reveal a highly dynamic process.
    Wang H; Macagno ER
    J Neurosci; 1997 Apr; 17(7):2408-19. PubMed ID: 9065502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of the receptive fields of leech mechanosensory neurons during embryonic development.
    Kramer AP; Kuwada JY
    J Neurosci; 1983 Dec; 3(12):2474-86. PubMed ID: 6317810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo dynamics of CNS sensory arbor formation: a time-lapse study in the embryonic leech.
    Baker MW; Kauffman B; Macagno ER; Zipser B
    J Neurobiol; 2003 Jul; 56(1):41-53. PubMed ID: 12767031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurite growth patterns leading to functional synapses in an identified embryonic neuron.
    Reese D; Drapeau P
    J Neurosci; 1998 Aug; 18(15):5652-62. PubMed ID: 9671656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action potential reflection and failure at axon branch points cause stepwise changes in EPSPs in a neuron essential for learning.
    Baccus SA; Burrell BD; Sahley CL; Muller KJ
    J Neurophysiol; 2000 Mar; 83(3):1693-700. PubMed ID: 10712489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing neurons use a putative pioneer's peripheral arbor to establish their terminal fields.
    Gan WB; Macagno ER
    J Neurosci; 1995 May; 15(5 Pt 1):3254-62. PubMed ID: 7751908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between segmental homologs and between isoneuronal branches guide the formation of sensory terminal fields.
    Gan WB; Macagno ER
    J Neurosci; 1995 May; 15(5 Pt 1):3243-53. PubMed ID: 7751907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extension and retraction of axonal projections by some developing neurons in the leech depends upon the existence of neighboring homologues. II. The AP and AE neurons.
    Gao WQ; Macagno ER
    J Neurobiol; 1987 May; 18(3):295-313. PubMed ID: 3298543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-recognition: a constraint on the formation of electrical coupling in neurons.
    Guthrie PB; Lee RE; Rehder V; Schmidt MF; Kater SB
    J Neurosci; 1994 Mar; 14(3 Pt 2):1477-85. PubMed ID: 8126549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression levels of a LAR-like receptor protein tyrosine phosphatase correlate with neuronal branching and arbor density in the medicinal leech.
    Baker MW; Macagno ER
    Dev Biol; 2010 Aug; 344(1):346-57. PubMed ID: 20541541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of a LAR-like receptor tyrosine phosphatase in growth cone collapse and mutual-avoidance by sibling processes.
    Baker MW; Macagno ER
    J Neurobiol; 2000 Aug; 44(2):194-203. PubMed ID: 10934322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular matrix glycoproteins inhibit neurite outgrowth of different types of identified leech neurons in culture.
    Flores-Abreu N; Vargas J; De-Miguel FF
    Neuroscience; 2006; 137(4):1165-76. PubMed ID: 16359820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of peripheral target contact influences the development of identified central dendritic branches in a leech motor neuron in vivo.
    Johnson LA; Kristan WB; Jellies J; French KA
    J Neurobiol; 2000 Jun; 43(4):365-78. PubMed ID: 10861562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellar target neurons provide a stop signal for afferent neurite extension in vitro.
    Baird DH; Hatten ME; Mason CA
    J Neurosci; 1992 Feb; 12(2):619-34. PubMed ID: 1740694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of substrate and calcium in neurite retraction of leech neurons following depolarization.
    Neely MD
    J Neurosci; 1993 Mar; 13(3):1292-301. PubMed ID: 8441011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental arborization of sensory neurons in the leech Haementeria ghilianii. II. Experimentally induced variations in the branching pattern.
    Kramer AP; Stent GS
    J Neurosci; 1985 Mar; 5(3):768-75. PubMed ID: 3973696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native extracellular matrix induces a well-organized bipolar outgrowth pattern with neurite extension and retraction in cultured neurons.
    de Miguel FF; Vargas J
    J Comp Neurol; 2000 Feb; 417(4):387-98. PubMed ID: 10701862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Retraction of processes of remaining cells of the leech nervous system caused by neuron destruction].
    Valitov IS; Nizamov AR; Safin RA; Sitdikov RF
    Biull Eksp Biol Med; 1988 Jun; 105(6):653-5. PubMed ID: 3390581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser microbeam axotomy and conduction block show that electrical transmission at a central synapse is distributed at multiple contacts.
    Gu XN; Macagno ER; Muller KJ
    J Neurobiol; 1989 Jul; 20(5):422-34. PubMed ID: 2545814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.