These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 9552306)
1. Differences in the mechanical strength of dried microcrystalline cellulose pellets are not due to significant changes in the degree of hydrogen bonding. Millili GP; Wigent RJ; Schwartz JB Pharm Dev Technol; 1996 Oct; 1(3):239-49. PubMed ID: 9552306 [TBL] [Abstract][Full Text] [Related]
2. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation. Buckton G; Yonemochi E; Yoon WL; Moffat AC Int J Pharm; 1999 Apr; 181(1):41-7. PubMed ID: 10370201 [TBL] [Abstract][Full Text] [Related]
3. Influence of the type of cellulose on properties of multi-unit target releasing in stomach dosage form with verapamil hydrochloride. Sawicki W; Łunio R; Walentynowicz O; Kubasik-Juraniec J Acta Pol Pharm; 2007; 64(1):81-8. PubMed ID: 17665855 [TBL] [Abstract][Full Text] [Related]
4. The influence of microcrystalline cellulose grade on shape and shape distributions of pellets produced by extrusion-spheronization. Koo OM; Heng PW Chem Pharm Bull (Tokyo); 2001 Nov; 49(11):1383-7. PubMed ID: 11724226 [TBL] [Abstract][Full Text] [Related]
5. Properties of microcrystalline cellulose and powder cellulose after extrusion/spheronization as studied by fourier transform Raman spectroscopy and environmental scanning electron microscopy. Fechner PM; Wartewig S; Füting M; Heilmann A; Neubert RH; Kleinebudde P AAPS PharmSci; 2003 Nov; 5(4):E31. PubMed ID: 15198519 [TBL] [Abstract][Full Text] [Related]
6. Determination of the crystallinity of cephalexin in pharmaceutical formulations by chemometrical near-infrared spectroscopy. Fukui Y; Otsuka M Drug Dev Ind Pharm; 2010 Jan; 36(1):72-80. PubMed ID: 19656006 [TBL] [Abstract][Full Text] [Related]
7. The change in characteristics of microcrystalline cellulose during wet granulation using a high-shear mixer. Suzuki T; Kikuchi H; Yamamura S; Terada K; Yamamoto K J Pharm Pharmacol; 2001 May; 53(5):609-16. PubMed ID: 11370700 [TBL] [Abstract][Full Text] [Related]
8. To prepare and characterize microcrystalline cellulose granules using water and isopropyl alcohol as granulating agents and determine its end-point by thermal and rheological tools. Chaudhari SP; Dave RH Drug Dev Ind Pharm; 2015 May; 41(5):744-52. PubMed ID: 24654935 [TBL] [Abstract][Full Text] [Related]
9. Influence of water-cellulose binding energy on stability of acetylsalicylic acid. Heidarian M; Mihranyan A; Strømme M; Ek R Int J Pharm; 2006 Oct; 323(1-2):139-45. PubMed ID: 16854539 [TBL] [Abstract][Full Text] [Related]
10. Physicochemical and mechanical evaluation of a novel high density grade of silicified microcrystalline cellulose. Steele DF; Tobyn M; Edge S; Chen A; Staniforth JN Drug Dev Ind Pharm; 2004 Jan; 30(1):103-9. PubMed ID: 15000435 [TBL] [Abstract][Full Text] [Related]
11. Physicochemical properties of granulating liquids and their influence on microcrystalline cellulose pellets obtained by extrusion-spheronisation technology. Dreu R; Sirca J; Pintye-Hodi K; Burjan T; Planinsek O; Srcic S Int J Pharm; 2005 Mar; 291(1-2):99-111. PubMed ID: 15707736 [TBL] [Abstract][Full Text] [Related]
12. Modulation of the tabletting behaviour of microcrystalline cellulose pellets by the incorporation of polyethylene glycol. Nicklasson F; Alderborn G Eur J Pharm Sci; 1999 Oct; 9(1):57-65. PubMed ID: 10493997 [TBL] [Abstract][Full Text] [Related]
13. Microstructural and drug release properties of oven-dried and of slowly or fast frozen freeze-dried MCC-Carbopol pellets. Gómez-Carracedo A; Souto C; Martínez-Pacheco R; Concheiro A; Gómez-Amoza JL Eur J Pharm Biopharm; 2007 Aug; 67(1):236-45. PubMed ID: 17317125 [TBL] [Abstract][Full Text] [Related]
14. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Amin MC; Abadi AG; Katas H Carbohydr Polym; 2014 Jan; 99():180-9. PubMed ID: 24274495 [TBL] [Abstract][Full Text] [Related]
15. The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose. De Figueiredo LP; Ferreira FF J Pharm Sci; 2014 May; 103(5):1394-9. PubMed ID: 24590572 [TBL] [Abstract][Full Text] [Related]
16. Preparation of porous microcrystalline cellulose pellets by freeze-drying: effects of wetting liquid and initial freezing conditions. Balaxi M; Nikolakakis I; Malamataris S J Pharm Sci; 2010 Apr; 99(4):2104-13. PubMed ID: 19894272 [TBL] [Abstract][Full Text] [Related]
17. Powdered cellulose as excipient for extrusion-spheronization pellets of a cohesive hydrophobic drug. Alvarez L; Concheiro A; Gómez-Amoza JL; Souto C; Martínez-Pacheco R Eur J Pharm Biopharm; 2003 May; 55(3):291-5. PubMed ID: 12754003 [TBL] [Abstract][Full Text] [Related]
18. Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. Kocherbitov V; Ulvenlund S; Kober M; Jarring K; Arnebrant T J Phys Chem B; 2008 Mar; 112(12):3728-34. PubMed ID: 18307340 [TBL] [Abstract][Full Text] [Related]
19. Factorial designed experiment to study the effects of excipients on the mechanical properties of pellets. Bashaiwoldu AB; Podczeck F; Newton JM J Pharm Pharmacol; 2006 Oct; 58(10):1305-9. PubMed ID: 17034652 [TBL] [Abstract][Full Text] [Related]
20. Moistening liquid-dependent de-aggregation of microcrystalline cellulose and its impact on pellet formation by extrusion-spheronization. Sarkar S; Liew CV AAPS PharmSciTech; 2014 Jun; 15(3):753-61. PubMed ID: 24554239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]