These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 9552306)

  • 21. Extrusion-spheronisation of microcrystalline cellulose pastes using a non-aqueous liquid binder.
    Mascia S; Seiler C; Fitzpatrick S; Wilson DI
    Int J Pharm; 2010 Apr; 389(1-2):1-9. PubMed ID: 20123008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directional bonding in compacted microcrystalline cellulose.
    Edge S; Steele DF; Tobyn MJ; Staniforth JN; Chen A
    Drug Dev Ind Pharm; 2001 Aug; 27(7):613-21. PubMed ID: 11694008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is silicified wet-granulated microcrystalline cellulose better than original wet-granulated microcrystalline cellulose?
    Habib YS; Abramowitz R; Jerzewski RL; Jain NB; Agharkar SN
    Pharm Dev Technol; 1999 Aug; 4(3):431-7. PubMed ID: 10434289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supramolecular elucidation of the quality attributes of microcrystalline cellulose and isomalt composite pellet cores.
    Antal I; Kállai N; Luhn O; Bernard J; Nagy ZK; Szabó B; Klebovich I; Zelkó R
    J Pharm Biomed Anal; 2013 Oct; 84():124-8. PubMed ID: 23827942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets.
    Suzuki T; Nakagami H
    Eur J Pharm Biopharm; 1999 May; 47(3):225-30. PubMed ID: 10382106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rheological properties of self-emulsifying systems, water and microcrystalline cellulose.
    Newton JM; Bazzigialuppi M; Podczeck F; Booth S; Clarke A
    Eur J Pharm Sci; 2005 Oct; 26(2):176-83. PubMed ID: 16046106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy.
    Oh SY; Yoo DI; Shin Y; Kim HC; Kim HY; Chung YS; Park WH; Youk JH
    Carbohydr Res; 2005 Oct; 340(15):2376-91. PubMed ID: 16153620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The rheological properties of modified microcrystalline cellulose containing high levels of model drugs.
    Knight PE; Podczeck F; Newton JM
    J Pharm Sci; 2009 Jun; 98(6):2160-9. PubMed ID: 18825774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of using pectin and chitosan as natural excipients in pellet formulation.
    Nejati L; Kalantari F; Bavarsad N; Saremnejad F; Moghaddam PT; Akhgari A
    Int J Biol Macromol; 2018 Dec; 120(Pt A):1208-1215. PubMed ID: 30165148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Moisture sorption by cellulose powders of varying crystallinity.
    Mihranyan A; Llagostera AP; Karmhag R; Strømme M; Ek R
    Int J Pharm; 2004 Jan; 269(2):433-42. PubMed ID: 14706254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of prednisolone in controlled porosity osmotic pump pellets using solid-state NMR spectroscopy.
    Sotthivirat S; Lubach JW; Haslam JL; Munson EJ; Stella VJ
    J Pharm Sci; 2007 May; 96(5):1008-17. PubMed ID: 17455361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-vitro and in-vivo evaluation of enteric-coated starch-based pellets prepared via extrusion/spheronisation.
    Dukić-Ott A; De Beer T; Remon JP; Baeyens W; Foreman P; Vervaet C
    Eur J Pharm Biopharm; 2008 Sep; 70(1):302-12. PubMed ID: 18579353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The crystallite-gel-model for microcrystalline cellulose in wet-granulation, extrusion, and spheronization.
    Kleinebudde P
    Pharm Res; 1997 Jun; 14(6):804-9. PubMed ID: 9210201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study on water adsorption onto microcrystalline cellulose by near-infrared spectroscopy with two-dimensional correlation spectroscopy and principal component analysis.
    Watanabe A; Morita S; Ozaki Y
    Appl Spectrosc; 2006 Sep; 60(9):1054-61. PubMed ID: 17002831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier.
    Uesu NY; Pineda EA; Hechenleitner AA
    Int J Pharm; 2000 Sep; 206(1-2):85-96. PubMed ID: 11058813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of intra- and extragranular microcrystalline cellulose in tablet dissolution.
    Li JZ; Rekhi GS; Augsburger LL; Shangraw RF
    Pharm Dev Technol; 1996 Dec; 1(4):343-55. PubMed ID: 9552318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling of porosity and waterfronts in cellulosic pellets for understanding drug release behavior.
    Gomez-Carracedo A; Martinez-Pacheco R; Concheiro A; Gomez-Amoza JL
    Int J Pharm; 2010 Mar; 388(1-2):101-6. PubMed ID: 20038448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose.
    Kondo T; Koschella A; Heublein B; Klemm D; Heinze T
    Carbohydr Res; 2008 Oct; 343(15):2600-4. PubMed ID: 18635159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microcrystalline cellulose-water interaction--a novel approach using thermoporosimetry.
    Luukkonen P; Maloney T; Rantanen J; Paulapuro H; Yliruusi J
    Pharm Res; 2001 Nov; 18(11):1562-9. PubMed ID: 11758764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Depolymerization of microcrystalline cellulose by the combination of ultrasound and Fenton reagent.
    Zhang MF; Qin YH; Ma JY; Yang L; Wu ZK; Wang TL; Wang WG; Wang CW
    Ultrason Sonochem; 2016 Jul; 31():404-8. PubMed ID: 26964965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.