These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 9552455)
1. Hemolytic and antifungal activity of liposome-entrapped amphotericin B prepared by the precipitation method. Kim JC; Lee EO; Kim JY; Bae SK; Choi TB; Kim JD Pharm Dev Technol; 1997 Aug; 2(3):275-84. PubMed ID: 9552455 [TBL] [Abstract][Full Text] [Related]
2. Therapeutic and hemolytic evaluation of in-situ liposomal preparation containing amphotericin - beta complexed with different chemically modified beta - cyclodextrins. Chakraborty KK; Naik SR J Pharm Pharm Sci; 2003; 6(2):231-7. PubMed ID: 12935435 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of the selective toxicity of amphotericin B incorporated into liposomes. Juliano RL; Grant CW; Barber KR; Kalp MA Mol Pharmacol; 1987 Jan; 31(1):1-11. PubMed ID: 3807887 [TBL] [Abstract][Full Text] [Related]
4. Release of amphotericin B from delivery systems and its action against fungal and mammalian cells. Legrand P; Chéron M; Leroy L; Bolard J J Drug Target; 1997; 4(5):311-9. PubMed ID: 9169988 [TBL] [Abstract][Full Text] [Related]
5. Water-soluble amphotericin B-polyvinylpyrrolidone complexes with maintained antifungal activity against Candida spp. and Aspergillus spp. and reduced haemolytic and cytotoxic effects. Charvalos E; Tzatzarakis MN; Van Bambeke F; Tulkens PM; Tsatsakis AM; Tzanakakis GN; Mingeot-Leclercq MP J Antimicrob Chemother; 2006 Feb; 57(2):236-44. PubMed ID: 16361329 [TBL] [Abstract][Full Text] [Related]
6. Arabinogalactan protein from Arachis hypogaea: role as carrier in drug-formulations. Parveen S; Gupta AD; Prasad R Int J Pharm; 2007 Mar; 333(1-2):79-86. PubMed ID: 17084048 [TBL] [Abstract][Full Text] [Related]
7. Effect of aggregation state on the toxicity of different amphotericin B preparations. Espada R; Valdespina S; Alfonso C; Rivas G; Ballesteros MP; Torrado JJ Int J Pharm; 2008 Sep; 361(1-2):64-9. PubMed ID: 18599228 [TBL] [Abstract][Full Text] [Related]
8. Comparative in vitro studies on liposomal formulations of amphotericin B and its derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester (MFAME). Cybulska B; Kupczyk K; Szlinder-Richert J; Borowski E Acta Biochim Pol; 2002; 49(1):67-75. PubMed ID: 12136958 [TBL] [Abstract][Full Text] [Related]
9. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Jung SH; Lim DH; Jung SH; Lee JE; Jeong KS; Seong H; Shin BC Eur J Pharm Sci; 2009 Jun; 37(3-4):313-20. PubMed ID: 19491021 [TBL] [Abstract][Full Text] [Related]
10. Effects of amphotericin B incorporated into liposomes and in lipid suspensions in the treatment of murine candidiasis. Kretschmar M; Nichterlein T; Hannak D; Hof H Arzneimittelforschung; 1996 Jul; 46(7):711-5. PubMed ID: 8842344 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of alternative dosing regimens of poly-aggregated amphotericin B. Espada R; Valdespina S; Molero G; Dea MA; Ballesteros MP; Torrado JJ Int J Antimicrob Agents; 2008 Jul; 32(1):55-61. PubMed ID: 18534826 [TBL] [Abstract][Full Text] [Related]
13. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Hussain A; Samad A; Singh SK; Ahsan MN; Haque MW; Faruk A; Ahmed FJ Drug Deliv; 2016; 23(2):642-47. PubMed ID: 25013957 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Gangadhar KN; Adhikari K; Srichana T Int J Pharm; 2014 Aug; 471(1-2):430-8. PubMed ID: 24907597 [TBL] [Abstract][Full Text] [Related]
15. In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells. Staedtke V; Brähler M; Müller A; Georgieva R; Bauer S; Sternberg N; Voigt A; Lemke A; Keck C; Möschwitzer J; Bäumler H Small; 2010 Jan; 6(1):96-103. PubMed ID: 19882684 [TBL] [Abstract][Full Text] [Related]
16. Preparation by spray drying of amphotericin B-phospholipid composite particles and their anticellular activity. Kim JC; Kim JD Drug Deliv; 2001; 8(3):143-7. PubMed ID: 11570594 [TBL] [Abstract][Full Text] [Related]
17. [Therapeutic efficiency of amphotericin B liposome modified by RMP-7 to transport drug across blood brain barrier]. Zhang XB; Yuan S; Lei PC; Hou XP Yao Xue Xue Bao; 2004 Apr; 39(4):292-5. PubMed ID: 15303662 [TBL] [Abstract][Full Text] [Related]
18. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. Moraes Moreira Carraro TC; Altmeyer C; Maissar Khalil N; Mara Mainardes R J Mycol Med; 2017 Dec; 27(4):519-529. PubMed ID: 28797532 [TBL] [Abstract][Full Text] [Related]
19. Amphotericin B microspheres: a therapeutic approach to minimize toxicity while maintaining antifungal efficacy. Angra PK; Oettinger C; Balakrishna Pai S; D'Souza MJ J Microencapsul; 2009 Nov; 26(7):580-7. PubMed ID: 19839793 [TBL] [Abstract][Full Text] [Related]
20. PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome. Van de Ven H; Paulussen C; Feijens PB; Matheeussen A; Rombaut P; Kayaert P; Van den Mooter G; Weyenberg W; Cos P; Maes L; Ludwig A J Control Release; 2012 Aug; 161(3):795-803. PubMed ID: 22641062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]