BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9552455)

  • 1. Hemolytic and antifungal activity of liposome-entrapped amphotericin B prepared by the precipitation method.
    Kim JC; Lee EO; Kim JY; Bae SK; Choi TB; Kim JD
    Pharm Dev Technol; 1997 Aug; 2(3):275-84. PubMed ID: 9552455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic and hemolytic evaluation of in-situ liposomal preparation containing amphotericin - beta complexed with different chemically modified beta - cyclodextrins.
    Chakraborty KK; Naik SR
    J Pharm Pharm Sci; 2003; 6(2):231-7. PubMed ID: 12935435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the selective toxicity of amphotericin B incorporated into liposomes.
    Juliano RL; Grant CW; Barber KR; Kalp MA
    Mol Pharmacol; 1987 Jan; 31(1):1-11. PubMed ID: 3807887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of amphotericin B from delivery systems and its action against fungal and mammalian cells.
    Legrand P; Chéron M; Leroy L; Bolard J
    J Drug Target; 1997; 4(5):311-9. PubMed ID: 9169988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-soluble amphotericin B-polyvinylpyrrolidone complexes with maintained antifungal activity against Candida spp. and Aspergillus spp. and reduced haemolytic and cytotoxic effects.
    Charvalos E; Tzatzarakis MN; Van Bambeke F; Tulkens PM; Tsatsakis AM; Tzanakakis GN; Mingeot-Leclercq MP
    J Antimicrob Chemother; 2006 Feb; 57(2):236-44. PubMed ID: 16361329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabinogalactan protein from Arachis hypogaea: role as carrier in drug-formulations.
    Parveen S; Gupta AD; Prasad R
    Int J Pharm; 2007 Mar; 333(1-2):79-86. PubMed ID: 17084048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of aggregation state on the toxicity of different amphotericin B preparations.
    Espada R; Valdespina S; Alfonso C; Rivas G; Ballesteros MP; Torrado JJ
    Int J Pharm; 2008 Sep; 361(1-2):64-9. PubMed ID: 18599228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative in vitro studies on liposomal formulations of amphotericin B and its derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester (MFAME).
    Cybulska B; Kupczyk K; Szlinder-Richert J; Borowski E
    Acta Biochim Pol; 2002; 49(1):67-75. PubMed ID: 12136958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics.
    Jung SH; Lim DH; Jung SH; Lee JE; Jeong KS; Seong H; Shin BC
    Eur J Pharm Sci; 2009 Jun; 37(3-4):313-20. PubMed ID: 19491021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of amphotericin B incorporated into liposomes and in lipid suspensions in the treatment of murine candidiasis.
    Kretschmar M; Nichterlein T; Hannak D; Hof H
    Arzneimittelforschung; 1996 Jul; 46(7):711-5. PubMed ID: 8842344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of alternative dosing regimens of poly-aggregated amphotericin B.
    Espada R; Valdespina S; Molero G; Dea MA; Ballesteros MP; Torrado JJ
    Int J Antimicrob Agents; 2008 Jul; 32(1):55-61. PubMed ID: 18534826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerized phospholipid vesicles containing amphotericin B: evaluation of toxic and antifungal activities in vitro.
    Mehta R; Hsu MJ; Juliano RL; Krause HJ; Regen SL
    J Pharm Sci; 1986 Jun; 75(6):579-81. PubMed ID: 3525815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation.
    Hussain A; Samad A; Singh SK; Ahsan MN; Haque MW; Faruk A; Ahmed FJ
    Drug Deliv; 2016; 23(2):642-47. PubMed ID: 25013957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation.
    Gangadhar KN; Adhikari K; Srichana T
    Int J Pharm; 2014 Aug; 471(1-2):430-8. PubMed ID: 24907597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells.
    Staedtke V; Brähler M; Müller A; Georgieva R; Bauer S; Sternberg N; Voigt A; Lemke A; Keck C; Möschwitzer J; Bäumler H
    Small; 2010 Jan; 6(1):96-103. PubMed ID: 19882684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation by spray drying of amphotericin B-phospholipid composite particles and their anticellular activity.
    Kim JC; Kim JD
    Drug Deliv; 2001; 8(3):143-7. PubMed ID: 11570594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Therapeutic efficiency of amphotericin B liposome modified by RMP-7 to transport drug across blood brain barrier].
    Zhang XB; Yuan S; Lei PC; Hou XP
    Yao Xue Xue Bao; 2004 Apr; 39(4):292-5. PubMed ID: 15303662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles.
    Moraes Moreira Carraro TC; Altmeyer C; Maissar Khalil N; Mara Mainardes R
    J Mycol Med; 2017 Dec; 27(4):519-529. PubMed ID: 28797532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphotericin B microspheres: a therapeutic approach to minimize toxicity while maintaining antifungal efficacy.
    Angra PK; Oettinger C; Balakrishna Pai S; D'Souza MJ
    J Microencapsul; 2009 Nov; 26(7):580-7. PubMed ID: 19839793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome.
    Van de Ven H; Paulussen C; Feijens PB; Matheeussen A; Rombaut P; Kayaert P; Van den Mooter G; Weyenberg W; Cos P; Maes L; Ludwig A
    J Control Release; 2012 Aug; 161(3):795-803. PubMed ID: 22641062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.