BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9553940)

  • 1. The effect of AC voltage on the ionophore-induced steady-state flux across the bilayer lipid membrane.
    Dzekunov SM; Antonenko YuN ; Pohl P
    Membr Cell Biol; 1997; 11(4):529-38. PubMed ID: 9553940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of the electrogenic ionophores, valinomycin and CCCP, can lead to non-electrogenic K+/H+ exchange on bilayer lipid membranes.
    Orlov VN; Antonenko YN; Bulychev AA; Yaguzhinsky LS
    FEBS Lett; 1994 May; 345(2-3):104-6. PubMed ID: 7515356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer.
    Becucci L; Moncelli MR; Naumann R; Guidelli R
    J Am Chem Soc; 2005 Sep; 127(38):13316-23. PubMed ID: 16173764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Electrical breakdown of a lipid bilayer by a diffusion potential].
    Puchkova TV; Putvinskiĭ AV; Vladimirov IuA
    Dokl Akad Nauk SSSR; 1979; 249(5):1241-4. PubMed ID: 527467
    [No Abstract]   [Full Text] [Related]  

  • 5. Cyclosporin A does not protect the disruption of the inner mitochondrial membrane potential induced by potassium ionophores in intact K562 cells.
    Marques-Santos LF; Coqueiro VM; Rumjanek VM
    Cell Biol Int; 2006 Mar; 30(3):197-204. PubMed ID: 16376584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ionophores on the phospholipid flippase activity of gastric vesicles.
    Suzuki H; Morii M; Takeguchi N
    Jpn J Physiol; 1999 Oct; 49(5):431-6. PubMed ID: 10603427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Single ion channels and macroscopic conductivity of bilayer lipid membranes].
    Cherenkevich SN; Khmel'nitskiĭ AI; Drapeza AI; Bakovich IA
    Biofizika; 1989; 34(1):45-8. PubMed ID: 2471556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium red-mediated inhibition of large-conductance Ca2+-activated K+ channels in rat pituitary GH3 cells.
    Wu SN; Jan CR; Li HF
    J Pharmacol Exp Ther; 1999 Sep; 290(3):998-1005. PubMed ID: 10454470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second harmonic studies of ions crossing liposome membranes in real time.
    Liu J; Subir M; Nguyen K; Eisenthal KB
    J Phys Chem B; 2008 Dec; 112(48):15263-6. PubMed ID: 18989915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flux ratio of valinomycin-mediated K+ fluxes across the human red cell membrane in the presence of the protonophore CCCP.
    Bennekou P; Christophersen P
    J Membr Biol; 1986; 93(3):221-7. PubMed ID: 3820279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CCCP activation of the reconstituted NaK-pump.
    Yoda A; Yoda S
    J Membr Biol; 1990 Aug; 117(2):153-61. PubMed ID: 2170657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity.
    Kendall JK; Johnson BR; Symonds PH; Imperato G; Bushby RJ; Gwyer JD; van Berkel C; Evans SD; Jeuken LJ
    Chemphyschem; 2010 Jul; 11(10):2191-8. PubMed ID: 20512836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of multidrug resistance by valinomycin is overcome by CCCP.
    Goda K; Krasznai Z; Gaspar R; Lankelma J; Westerhoff HV; Damjanovich S; Szabó G
    Biochem Biophys Res Commun; 1996 Feb; 219(2):306-10. PubMed ID: 8604982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes.
    Kasianowicz J; Benz R; McLaughlin S
    J Membr Biol; 1984; 82(2):179-90. PubMed ID: 6096547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae.
    Pereira MB; Tisi R; Fietto LG; Cardoso AS; França MM; Carvalho FM; Trópia MJ; Martegani E; Castro IM; Brandão RL
    FEMS Yeast Res; 2008 Jun; 8(4):622-30. PubMed ID: 18399987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity.
    Maher S; Basit H; Forster RJ; Keyes TE
    Bioelectrochemistry; 2016 Dec; 112():16-23. PubMed ID: 27420132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutual inactivation of valinomycin and protonophores by complex formation in liposomal membranes.
    Krishnamoorthy G
    FEBS Lett; 1988 May; 232(1):199-203. PubMed ID: 2835269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of in vivo bioluminescence to the study of ionophoretic action.
    Simpson WJ
    J Biolumin Chemilumin; 1993; 8(3):147-52. PubMed ID: 8493884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Change in the state of a lecithin molecular layer at the heptane-aqueous KCl solutions interface on the introduction of the ionophore, valinomycin].
    Shliakhter TA; Lev AA
    Tsitologiia; 1980 Oct; 22(10):1193-9. PubMed ID: 7445085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of ionophoric transport of indium-111 cations through a lipid bilayer membrane.
    Choi HO; Hwang KJ
    J Nucl Med; 1987 Jan; 28(1):91-6. PubMed ID: 3098933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.