These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9553940)

  • 1. The effect of AC voltage on the ionophore-induced steady-state flux across the bilayer lipid membrane.
    Dzekunov SM; Antonenko YuN ; Pohl P
    Membr Cell Biol; 1997; 11(4):529-38. PubMed ID: 9553940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of the electrogenic ionophores, valinomycin and CCCP, can lead to non-electrogenic K+/H+ exchange on bilayer lipid membranes.
    Orlov VN; Antonenko YN; Bulychev AA; Yaguzhinsky LS
    FEBS Lett; 1994 May; 345(2-3):104-6. PubMed ID: 7515356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer.
    Becucci L; Moncelli MR; Naumann R; Guidelli R
    J Am Chem Soc; 2005 Sep; 127(38):13316-23. PubMed ID: 16173764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Electrical breakdown of a lipid bilayer by a diffusion potential].
    Puchkova TV; Putvinskiĭ AV; Vladimirov IuA
    Dokl Akad Nauk SSSR; 1979; 249(5):1241-4. PubMed ID: 527467
    [No Abstract]   [Full Text] [Related]  

  • 5. Cyclosporin A does not protect the disruption of the inner mitochondrial membrane potential induced by potassium ionophores in intact K562 cells.
    Marques-Santos LF; Coqueiro VM; Rumjanek VM
    Cell Biol Int; 2006 Mar; 30(3):197-204. PubMed ID: 16376584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ionophores on the phospholipid flippase activity of gastric vesicles.
    Suzuki H; Morii M; Takeguchi N
    Jpn J Physiol; 1999 Oct; 49(5):431-6. PubMed ID: 10603427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Single ion channels and macroscopic conductivity of bilayer lipid membranes].
    Cherenkevich SN; Khmel'nitskiĭ AI; Drapeza AI; Bakovich IA
    Biofizika; 1989; 34(1):45-8. PubMed ID: 2471556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium red-mediated inhibition of large-conductance Ca2+-activated K+ channels in rat pituitary GH3 cells.
    Wu SN; Jan CR; Li HF
    J Pharmacol Exp Ther; 1999 Sep; 290(3):998-1005. PubMed ID: 10454470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second harmonic studies of ions crossing liposome membranes in real time.
    Liu J; Subir M; Nguyen K; Eisenthal KB
    J Phys Chem B; 2008 Dec; 112(48):15263-6. PubMed ID: 18989915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flux ratio of valinomycin-mediated K+ fluxes across the human red cell membrane in the presence of the protonophore CCCP.
    Bennekou P; Christophersen P
    J Membr Biol; 1986; 93(3):221-7. PubMed ID: 3820279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CCCP activation of the reconstituted NaK-pump.
    Yoda A; Yoda S
    J Membr Biol; 1990 Aug; 117(2):153-61. PubMed ID: 2170657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity.
    Kendall JK; Johnson BR; Symonds PH; Imperato G; Bushby RJ; Gwyer JD; van Berkel C; Evans SD; Jeuken LJ
    Chemphyschem; 2010 Jul; 11(10):2191-8. PubMed ID: 20512836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of multidrug resistance by valinomycin is overcome by CCCP.
    Goda K; Krasznai Z; Gaspar R; Lankelma J; Westerhoff HV; Damjanovich S; Szabó G
    Biochem Biophys Res Commun; 1996 Feb; 219(2):306-10. PubMed ID: 8604982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes.
    Kasianowicz J; Benz R; McLaughlin S
    J Membr Biol; 1984; 82(2):179-90. PubMed ID: 6096547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae.
    Pereira MB; Tisi R; Fietto LG; Cardoso AS; França MM; Carvalho FM; Trópia MJ; Martegani E; Castro IM; Brandão RL
    FEMS Yeast Res; 2008 Jun; 8(4):622-30. PubMed ID: 18399987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity.
    Maher S; Basit H; Forster RJ; Keyes TE
    Bioelectrochemistry; 2016 Dec; 112():16-23. PubMed ID: 27420132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutual inactivation of valinomycin and protonophores by complex formation in liposomal membranes.
    Krishnamoorthy G
    FEBS Lett; 1988 May; 232(1):199-203. PubMed ID: 2835269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of in vivo bioluminescence to the study of ionophoretic action.
    Simpson WJ
    J Biolumin Chemilumin; 1993; 8(3):147-52. PubMed ID: 8493884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Change in the state of a lecithin molecular layer at the heptane-aqueous KCl solutions interface on the introduction of the ionophore, valinomycin].
    Shliakhter TA; Lev AA
    Tsitologiia; 1980 Oct; 22(10):1193-9. PubMed ID: 7445085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of ionophoric transport of indium-111 cations through a lipid bilayer membrane.
    Choi HO; Hwang KJ
    J Nucl Med; 1987 Jan; 28(1):91-6. PubMed ID: 3098933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.