BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9553969)

  • 1. A method for the induction of a cochlea-specific auditory deprivation in the gerbil (Meriones unguiculatus).
    Hessel H; Walger M; Ernst S; Foerst A; von Wedel H; Klünter HD; Walkowiak W
    ORL J Otorhinolaryngol Relat Spec; 1998; 60(2):61-6. PubMed ID: 9553969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meriones unguiculatus (Gerbil) as an animal model for the ontogenetic cochlear implant research.
    Hessel H; Ernst LS; Walger M; von Wedel H; Dybek A; Schmidt U
    Am J Otol; 1997 Nov; 18(6 Suppl):S21. PubMed ID: 9391582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delayed electrical stimulation and BDNF application following induced deafness in rats.
    Song BN; Li YX; Han DM
    Acta Otolaryngol; 2009 Feb; 129(2):142-54. PubMed ID: 18607918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of monaural deprivation on maturation of the auditory pathway in the Mongolian gerbil (Meriones unguiculatus)].
    Ernst S; Foerst A; Hessel H; Klünter HD; von Wedel H; Walkowiak W; Walger M
    HNO; 2000 Mar; 48(3):195-203. PubMed ID: 10768110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear pathology induced by aminoglycoside ototoxicity during postnatal maturation in cats.
    Leake PA; Kuntz AL; Moore CM; Chambers PL
    Hear Res; 1997 Nov; 113(1-2):117-32. PubMed ID: 9387991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multichannel cochlear implant for selective neuronal activation and chronic use in the free-moving Mongolian gerbil.
    Wiegner A; Wright CG; Vollmer M
    J Neurosci Methods; 2016 Nov; 273():40-54. PubMed ID: 27519925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Using the Mongolian gerbil (Meriones unguiculatus) as an animal model in ontogenetic cochlear implant research].
    Hessel H; Ernst S; Mickenhagen A; Dück M; von Wedel H; Walger M
    HNO; 2000 Mar; 48(3):209-14. PubMed ID: 10768112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological changes to the cochlea in an animal model of profound deafness.
    Harrison RV; Shirane M; Fukushima N; Mount RJ
    Acta Otolaryngol Suppl; 1991; 489():5-11. PubMed ID: 1763645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny of electrically evoked brain stem potentials in neonatally deafened gerbils (Meriones unguiculatus) after cochlear implantation.
    Walger M; Hessel H; Ernst S; von Wedel H
    Am J Otol; 1997 Nov; 18(6 Suppl):S15-6. PubMed ID: 9391579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.
    Thai-Van H; Cozma S; Boutitie F; Disant F; Truy E; Collet L
    Clin Neurophysiol; 2007 Mar; 118(3):676-89. PubMed ID: 17223382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
    Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S
    Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
    Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R
    Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical stimulation of auditory neurons: effects of acute and chronic deafening.
    Richter CP; Bayon R; Izzo AD; Otting M; Suh E; Goyal S; Hotaling J; Walsh JT
    Hear Res; 2008 Aug; 242(1-2):42-51. PubMed ID: 18321670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice.
    Dou H; Vazquez AE; Namkung Y; Chu H; Cardell EL; Nie L; Parson S; Shin HS; Yamoah EN
    J Assoc Res Otolaryngol; 2004 Jun; 5(2):215-26. PubMed ID: 15357422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [cis-diamminedichloroplatinum cochlear toxicity].
    Ma CL
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1990 Aug; 25(4):199-201, 254. PubMed ID: 2076321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of long-term cochlear hearing loss on the functional organization of central auditory pathways.
    Harrison RV; Stanton SG; Nagasawa A; Ibrahim D; Mount RJ
    J Otolaryngol; 1993 Feb; 22(1):4-11. PubMed ID: 8445702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
    Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA
    J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Onset and development of auditory brainstem responses in the Mongolian gerbil (Meriones unguiculatus).
    McFadden SL; Walsh EJ; McGee J
    Hear Res; 1996 Oct; 100(1-2):68-79. PubMed ID: 8922981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of neonatal deafening and chronic intracochlear electrical stimulation on the cochlear nucleus in cats.
    Hultcrantz M; Snyder R; Rebscher S; Leake P
    Hear Res; 1991 Aug; 54(2):272-80. PubMed ID: 1938629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.