These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9554251)

  • 1. Corrosion behavior of copper in a copper bearing intrauterine device in the presence of indomethacin.
    Xue H; Xu N; Zhang C
    Contraception; 1998 Jan; 57(1):49-53. PubMed ID: 9554251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of copper corrosion in simulated uterine fluid in the presence of protein.
    Zhu J; Xu N; Zhang C
    Adv Contracept; 1999; 15(3):179-90. PubMed ID: 11019949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release behavior of cupric ions for TCu380A and TCu220C IUDs.
    Cao B; Xi T; Zheng Y
    Biomed Mater; 2008 Dec; 3(4):044114. PubMed ID: 19029604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of corrosion products on a copper-containing intrauterine device during storage at room temperature.
    Bastidas JM; Simancas J
    Biomaterials; 1997 Feb; 18(3):247-50. PubMed ID: 9031726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the release behavior of cupric ion for three types of Cu-IUDs and indomethacin for medicated Cu-IUD in simulated uterine fluid.
    Jinying L; Ying L; Xuan G; Yanli G; Jianping L
    Contraception; 2008 Apr; 77(4):299-302. PubMed ID: 18342655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of the copper-releasing intrauterine contraceptive device and its significance.
    Chantler EN; Scott K; Filho CI; Elstein M; Faragher EB; Lorimer GW; Brough I
    Br J Obstet Gynaecol; 1984 Feb; 91(2):172-81. PubMed ID: 6696861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of copper corrosion from frameless copper IUDs after long-term in utero residence.
    Wildemeersch D; Sabbe PJ; Dowsett MG; Flexer V; Thompson P; Walker D; Thomas PA; Adriaens A
    Contraception; 2014 Oct; 90(4):454-9. PubMed ID: 25015534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of stainless steel on corrosion behavior of copper in a copper-bearing intrauterine device.
    Xue H; Xu N; Zhang C
    Adv Contracept; 1998 Jun; 14(2):153-60. PubMed ID: 9820933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cupric ion release controlled by copper/low-density polyethylene nanocomposite in simulated uterine solution.
    Cai S; Xia X; Zhu C; Xie C
    J Biomed Mater Res B Appl Biomater; 2007 Jan; 80(1):220-5. PubMed ID: 16838355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The response of endometrial blood vessels to intrauterine contraceptive devices: an electron microscopic study.
    Sheppard BL; Bonnar J
    Br J Obstet Gynaecol; 1980 Feb; 87(2):143-54. PubMed ID: 7362802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auger and pixe microanalysis of intrauterine devices (IUDs).
    Foti A; Foti AM; Torrisi L
    Clin Exp Obstet Gynecol; 1990; 17(3-4):185-94. PubMed ID: 2292147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Release of copper by the Nova-T and ML Cu 250 short intrauterine devices].
    Koch UJ; Lorbach J; Stange J; Stichel W
    Arch Gynecol Obstet; 1989; 245(1-4):1013-5. PubMed ID: 2802682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the release behaviors of cupric ions from metallic copper and a novel composite in simulated body fluid.
    Li J; Suo J; Huang X; Ye C; Wu X
    J Biomed Mater Res B Appl Biomater; 2008 Apr; 85(1):172-9. PubMed ID: 17853420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of the levonorgestrel-releasing IUD: its advantages and disadvantages when compared to the copper-releasing IUDs.
    Chi IC
    Contraception; 1991 Dec; 44(6):573-88. PubMed ID: 1773615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SR-XRD in situ monitoring of copper-IUD corrosion in simulated uterine fluid using a portable spectroelectrochemical cell.
    Grayburn RA; Dowsett MG; Sabbe PJ; Wermeille D; Anjos JA; Flexer V; De Keersmaecker M; Wildermeersch D; Adriaens A
    Bioelectrochemistry; 2016 Aug; 110():41-5. PubMed ID: 27017519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological characteristics of incrustates of intrauterine contraceptive devices.
    Patai K; Berényi M; Asztalos M
    Acta Morphol Hung; 1986; 34(1-2):3-10. PubMed ID: 3105257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion of filamentous intra-uterine copper. The MLCu250 and the MLCu375.
    Kosonen A; Thiery M
    Contraception; 1983 Jan; 27(1):85-93. PubMed ID: 6839762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acceptability of an experimental intracervical device: results of a study controlling for selection bias.
    Shain RN; Ratsula K; Toivonen J; Lähteenmäki P; Luukkainen T; Holden AE; Rosenthal M
    Contraception; 1989 Jan; 39(1):73-84. PubMed ID: 2491982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning and transmission electron microscopy of material adherent to intrauterine contraceptive devices.
    Sheppard BL; Bonnar J
    Br J Obstet Gynaecol; 1980 Feb; 87(2):155-62. PubMed ID: 7362803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentrations of copper in human secretions and weight of the copper wire during the 4 to 7 years after insertion of a Cu-IUD (intrauterine device).
    Larsson B; Frankman O; Hamberger L
    Fertil Steril; 1981 Dec; 36(6):734-6. PubMed ID: 7308517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.