BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9554573)

  • 21. The influence of circadian phase and prior wake on neuromuscular function.
    Sargent C; Ferguson SA; Darwent D; Kennaway DJ; Roach GD
    Chronobiol Int; 2010 Jul; 27(5):911-21. PubMed ID: 20636205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Daily phase adjustment of human sleep-wake cycle].
    Yamanaka Y; Honma S; Honma K
    Nihon Rinsho; 2009 Aug; 67(8):1475-82. PubMed ID: 19768927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of human sleep-wake regulation and circadian rhythmicity.
    Dijk DJ; Lockley SW
    J Appl Physiol (1985); 2002 Feb; 92(2):852-62. PubMed ID: 11796701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights.
    Dijk DJ; Neri DF; Wyatt JK; Ronda JM; Riel E; Ritz-De Cecco A; Hughes RJ; Elliott AR; Prisk GK; West JB; Czeisler CA
    Am J Physiol Regul Integr Comp Physiol; 2001 Nov; 281(5):R1647-64. PubMed ID: 11641138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circadian desynchronization of core body temperature and sleep stages in the rat.
    Cambras T; Weller JR; Anglès-Pujoràs M; Lee ML; Christopher A; Díez-Noguera A; Krueger JM; de la Iglesia HO
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7634-9. PubMed ID: 17452631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Later endogenous circadian temperature nadir relative to an earlier wake time in older people.
    Duffy JF; Dijk DJ; Klerman EB; Czeisler CA
    Am J Physiol; 1998 Nov; 275(5 Pt 2):R1478-87. PubMed ID: 9791064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony.
    Darwent D; Ferguson SA; Sargent C; Paech GM; Williams L; Zhou X; Matthews RW; Dawson D; Kennaway DJ; Roach GD
    Chronobiol Int; 2010 Jul; 27(5):898-910. PubMed ID: 20636204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circadian rhythms in human performance and mood under constant conditions.
    Monk TH; Buysse DJ; Reynolds CF; Berga SL; Jarrett DB; Begley AE; Kupfer DJ
    J Sleep Res; 1997 Mar; 6(1):9-18. PubMed ID: 9125694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A forced desynchrony study of circadian pacemaker characteristics in seasonal affective disorder.
    Koorengevel KM; Beersma DG; den Boer JA; van den Hoofdakker RH
    J Biol Rhythms; 2002 Oct; 17(5):463-75. PubMed ID: 12375622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endogenous circadian control of the human autonomic nervous system.
    Hilton MF; Umali MU; Czeisler CA; Wyatt JK; Shea SA
    Comput Cardiol; 2000; 27():197-200. PubMed ID: 14632012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): the roles of light and the circadian system.
    Gerkema MP; Daan S; Wilbrink M; Hop MW; van der Leest F
    J Biol Rhythms; 1993; 8(2):151-71. PubMed ID: 8369551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time course of neurobehavioral alertness during extended wakefulness in morning- and evening-type healthy sleepers.
    Taillard J; Philip P; Claustrat B; Capelli A; Coste O; Chaumet G; Sagaspe P
    Chronobiol Int; 2011 Jul; 28(6):520-7. PubMed ID: 21797780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light treatment for sleep disorders: consensus report. II. Basic properties of circadian physiology and sleep regulation.
    Dijk DJ; Boulos Z; Eastman CI; Lewy AJ; Campbell SS; Terman M
    J Biol Rhythms; 1995 Jun; 10(2):113-25. PubMed ID: 7632985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulated driving under the influence of extended wake, time of day and sleep restriction.
    Matthews RW; Ferguson SA; Zhou X; Kosmadopoulos A; Kennaway DJ; Roach GD
    Accid Anal Prev; 2012 Mar; 45 Suppl():55-61. PubMed ID: 22239933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle.
    Wexler DB; Moore-Ede MC
    Aviat Space Environ Med; 1986 Dec; 57(12 Pt 1):1144-9. PubMed ID: 3800813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between alertness, performance, and body temperature in humans.
    Wright KP; Hull JT; Czeisler CA
    Am J Physiol Regul Integr Comp Physiol; 2002 Dec; 283(6):R1370-7. PubMed ID: 12388468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endogenous and exogenous components in the circadian variation of core body temperature in humans.
    Hiddinga AE; Beersma DG; Van den Hoofdakker RH
    J Sleep Res; 1997 Sep; 6(3):156-63. PubMed ID: 9358393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Masking effects of posture and sleep onset on core body temperature have distinct circadian rhythms: results from a 90-min/day protocol.
    Moul DE; Ombao H; Monk TH; Chen Q; Buysse DJ
    J Biol Rhythms; 2002 Oct; 17(5):447-62. PubMed ID: 12375621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crepuscular rhythms of EEG sleep-wake in a hystricomorph rodent, Octodon degus.
    Kas MJ; Edgar DM
    J Biol Rhythms; 1998 Feb; 13(1):9-17. PubMed ID: 9486839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulations of light effects on the human circadian pacemaker: implications for assessment of intrinsic period.
    Klerman EB; Dijk DJ; Kronauer RE; Czeisler CA
    Am J Physiol; 1996 Jan; 270(1 Pt 2):R271-82. PubMed ID: 8769811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.