These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Vasopressor response in a porcine model of hypothermic cardiac arrest is improved with active compression-decompression cardiopulmonary resuscitation using the inspiratory impedance threshold valve. Raedler C; Voelckel WG; Wenzel V; Bahlmann L; Baumeier W; Schmittinger CA; Herff H; Krismer AC; Lindner KH; Lurie KG Anesth Analg; 2002 Dec; 95(6):1496-502, table of contents. PubMed ID: 12456407 [TBL] [Abstract][Full Text] [Related]
6. Improving standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve in a porcine model of cardiac arrest. Lurie KG; Voelckel WG; Zielinski T; McKnite S; Lindstrom P; Peterson C; Wenzel V; Lindner KH; Samniah N; Benditt D Anesth Analg; 2001 Sep; 93(3):649-55. PubMed ID: 11524335 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a prototypic inspiratory impedance threshold valve designed to enhance the efficiency of cardiopulmonary resuscitation. Lurie KG; Barnes TA; Zielinski TM; McKnite SH Respir Care; 2003 Jan; 48(1):52-7. PubMed ID: 12556262 [TBL] [Abstract][Full Text] [Related]
8. Effects of active compression-decompression cardiopulmonary resuscitation with the inspiratory threshold valve in a young porcine model of cardiac arrest. Voelckel WG; Lurie KG; Sweeney M; McKnite S; Zielinski T; Lindstrom P; Peterson C; Wenzel V; Lindner KH Pediatr Res; 2002 Apr; 51(4):523-7. PubMed ID: 11919340 [TBL] [Abstract][Full Text] [Related]
9. Inspiratory impedance during active compression-decompression cardiopulmonary resuscitation: a randomized evaluation in patients in cardiac arrest. Plaisance P; Lurie KG; Payen D Circulation; 2000 Mar; 101(9):989-94. PubMed ID: 10704165 [TBL] [Abstract][Full Text] [Related]
10. Use of an inspiratory impedance threshold valve during chest compressions without assisted ventilation may result in hypoxaemia. Herff H; Raedler C; Zander R; Wenzel V; Schmittinger CA; Brenner E; Rieger M; Lindner KH Resuscitation; 2007 Mar; 72(3):466-76. PubMed ID: 17150297 [TBL] [Abstract][Full Text] [Related]
11. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767 [TBL] [Abstract][Full Text] [Related]
12. Improving the efficiency of cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Lurie K; Zielinski T; McKnite S; Sukhum P Crit Care Med; 2000 Nov; 28(11 Suppl):N207-9. PubMed ID: 11098948 [TBL] [Abstract][Full Text] [Related]
13. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest. Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732 [TBL] [Abstract][Full Text] [Related]
14. Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest. Yannopoulos D; Sigurdsson G; McKnite S; Benditt D; Lurie KG Resuscitation; 2004 Apr; 61(1):75-82. PubMed ID: 15081185 [TBL] [Abstract][Full Text] [Related]
15. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Lurie KG; Zielinski T; McKnite S; Aufderheide T; Voelckel W Circulation; 2002 Jan; 105(1):124-9. PubMed ID: 11772887 [TBL] [Abstract][Full Text] [Related]
16. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs. Lindner KH; Pfenninger EG; Lurie KG; Schürmann W; Lindner IM; Ahnefeld FW Circulation; 1993 Sep; 88(3):1254-63. PubMed ID: 8353887 [TBL] [Abstract][Full Text] [Related]
17. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs. Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959 [TBL] [Abstract][Full Text] [Related]
18. A tourniquet assisted cardiopulmonary resuscitation augments myocardial perfusion in a porcine model of cardiac arrest. Yang Z; Tang D; Wu X; Hu X; Xu J; Qian J; Yang M; Tang W Resuscitation; 2015 Jan; 86():49-53. PubMed ID: 25447436 [TBL] [Abstract][Full Text] [Related]
19. Head and thorax elevation during active compression decompression cardiopulmonary resuscitation with an impedance threshold device improves cerebral perfusion in a swine model of prolonged cardiac arrest. Moore JC; Segal N; Lick MC; Dodd KW; Salverda BJ; Hinke MB; Robinson AE; Debaty G; Lurie KG Resuscitation; 2017 Dec; 121():195-200. PubMed ID: 28827197 [TBL] [Abstract][Full Text] [Related]
20. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation. Niemann JT; Rosborough JP; Kassabian L; Salami B Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]