These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 9554651)
21. Improved cerebral perfusion pressures and 24-hr neurological survival in a porcine model of cardiac arrest with active compression-decompression cardiopulmonary resuscitation and augmentation of negative intrathoracic pressure. Metzger AK; Herman M; McKnite S; Tang W; Yannopoulos D Crit Care Med; 2012 Jun; 40(6):1851-6. PubMed ID: 22487997 [TBL] [Abstract][Full Text] [Related]
22. Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Yannopoulos D; Tang W; Roussos C; Aufderheide TP; Idris AH; Lurie KG Respir Care; 2005 May; 50(5):628-35. PubMed ID: 15871757 [TBL] [Abstract][Full Text] [Related]
23. Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chang MW; Coffeen P; Lurie KG; Shultz J; Bache RJ; White CW Chest; 1994 Oct; 106(4):1250-9. PubMed ID: 7924505 [TBL] [Abstract][Full Text] [Related]
24. Enhanced perfusion during advanced life support improves survival with favorable neurologic function in a porcine model of refractory cardiac arrest. Debaty G; Metzger A; Rees J; McKnite S; Puertas L; Yannopoulos D; Lurie K Crit Care Med; 2015 May; 43(5):1087-95. PubMed ID: 25756411 [TBL] [Abstract][Full Text] [Related]
25. Rapid induction of cerebral hypothermia is enhanced with active compression-decompression plus inspiratory impedance threshold device cardiopulmonary resusitation in a porcine model of cardiac arrest. Srinivasan V; Nadkarni VM; Yannopoulos D; Marino BS; Sigurdsson G; McKnite SH; Zook M; Benditt DG; Lurie KG J Am Coll Cardiol; 2006 Feb; 47(4):835-41. PubMed ID: 16487853 [TBL] [Abstract][Full Text] [Related]
26. Hemodynamic improvement of a LUCAS 2 automated device by addition of an impedance threshold device in a pig model of cardiac arrest. Debaty G; Segal N; Matsuura T; Fahey B; Wayne M; Mahoney B; Frascone R; Lick C; Yannopoulos D Resuscitation; 2014 Dec; 85(12):1704-7. PubMed ID: 25263510 [TBL] [Abstract][Full Text] [Related]
27. Use of an inspiratory impedance threshold valve during cardiopulmonary resuscitation: a progress report. Lurie K; Voelckel W; Plaisance P; Zielinski T; McKnite S; Kor D; Sugiyama A; Sukhum P Resuscitation; 2000 May; 44(3):219-30. PubMed ID: 10825624 [TBL] [Abstract][Full Text] [Related]
28. Effects of an impedance threshold device on hemodynamics and restoration of spontaneous circulation in prolonged porcine ventricular fibrillation. Menegazzi JJ; Salcido DD; Menegazzi MT; Rittenberger JC; Suffoletto BP; Logue ES; Mader TJ Prehosp Emerg Care; 2007; 11(2):179-85. PubMed ID: 17454804 [TBL] [Abstract][Full Text] [Related]
29. Effect of phased chest and abdominal compression-decompression cardiopulmonary resuscitation on myocardial and cerebral blood flow in pigs. Wenzel V; Lindner KH; Prengel AW; Strohmenger HU Crit Care Med; 2000 Apr; 28(4):1107-12. PubMed ID: 10809291 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of the Boussignac Cardiac arrest device (B-card) during cardiopulmonary resuscitation in an animal model. Moore JC; Lamhaut L; Hutin A; Dodd KW; Robinson AE; Lick MC; Salverda BJ; Hinke MB; Labarere J; Debaty G; Segal N Resuscitation; 2017 Oct; 119():81-88. PubMed ID: 28800887 [TBL] [Abstract][Full Text] [Related]
31. Effect of regulating airway pressure on intrathoracic pressure and vital organ perfusion pressure during cardiopulmonary resuscitation: a non-randomized interventional cross-over study. Kwon Y; Debaty G; Puertas L; Metzger A; Rees J; McKnite S; Yannopoulos D; Lurie K Scand J Trauma Resusc Emerg Med; 2015 Oct; 23():83. PubMed ID: 26511270 [TBL] [Abstract][Full Text] [Related]
32. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224 [TBL] [Abstract][Full Text] [Related]
33. Comparison of a 10-breaths-per-minute versus a 2-breaths-per-minute strategy during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Lurie KG; Yannopoulos D; McKnite SH; Herman ML; Idris AH; Nadkarni VM; Tang W; Gabrielli A; Barnes TA; Metzger AK Respir Care; 2008 Jul; 53(7):862-70. PubMed ID: 18593487 [TBL] [Abstract][Full Text] [Related]
34. Sodium nitroprusside enhanced cardiopulmonary resuscitation (SNPeCPR) improves vital organ perfusion pressures and carotid blood flow in a porcine model of cardiac arrest. Schultz J; Segal N; Kolbeck J; McKnite S; Caldwell E; Yannopoulos D Resuscitation; 2012 Mar; 83(3):374-7. PubMed ID: 21864483 [TBL] [Abstract][Full Text] [Related]
35. Effects of an impedance threshold valve upon hemodynamics in Standard CPR: studies in a refined computational model. Babbs CF Resuscitation; 2005 Sep; 66(3):335-45. PubMed ID: 16095795 [TBL] [Abstract][Full Text] [Related]
36. Comparison of CPR outcome predictors between rhythmic abdominal compression and continuous chest compression CPR techniques. Kammeyer RM; Pargett MS; Rundell AE Emerg Med J; 2014 May; 31(5):394-400. PubMed ID: 23471166 [TBL] [Abstract][Full Text] [Related]
37. Correlation of end tidal carbon dioxide, amplitude spectrum area, and coronary perfusion pressure in a porcine model of cardiac arrest. Segal N; Metzger AK; Moore JC; India L; Lick MC; Berger PS; Tang W; Benditt DG; Lurie KG Physiol Rep; 2017 Sep; 5(17):. PubMed ID: 28899911 [TBL] [Abstract][Full Text] [Related]
38. Combination of active compression decompression cardiopulmonary resuscitation and the inspiratory impedance threshold device: state of the art. Frascone RJ; Bitz D; Lurie K Curr Opin Crit Care; 2004 Jun; 10(3):193-201. PubMed ID: 15166836 [TBL] [Abstract][Full Text] [Related]
39. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. Halperin HR; Paradis N; Ornato JP; Zviman M; Lacorte J; Lardo A; Kern KB J Am Coll Cardiol; 2004 Dec; 44(11):2214-20. PubMed ID: 15582320 [TBL] [Abstract][Full Text] [Related]
40. From laboratory science to six emergency medical services systems: New understanding of the physiology of cardiopulmonary resuscitation increases survival rates after cardiac arrest. Aufderheide TP; Alexander C; Lick C; Myers B; Romig L; Vartanian L; Stothert J; McKnite S; Matsuura T; Yannopoulos D; Lurie K Crit Care Med; 2008 Nov; 36(11 Suppl):S397-404. PubMed ID: 20449900 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]