These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9555030)

  • 41. Regions with abundant neurofibrillary pathology in human brain exhibit a selective reduction in levels of binding-competent tau and accumulation of abnormal tau-isoforms (A68 proteins).
    Bramblett GT; Trojanowski JQ; Lee VM
    Lab Invest; 1992 Feb; 66(2):212-22. PubMed ID: 1735956
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of ferritin synthesis and iron regulatory protein 1 by oxygen in mouse peritoneal macrophages.
    Kuriyama-Matsumura K; Sato H; Yamaguchi M; Bannai S
    Biochem Biophys Res Commun; 1998 Aug; 249(1):241-6. PubMed ID: 9705865
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Iron: the Redox-active center of oxidative stress in Alzheimer disease.
    Castellani RJ; Moreira PI; Liu G; Dobson J; Perry G; Smith MA; Zhu X
    Neurochem Res; 2007 Oct; 32(10):1640-5. PubMed ID: 17508283
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium.
    Minotti G; Recalcati S; Mordente A; Liberi G; Calafiore AM; Mancuso C; Preziosi P; Cairo G
    FASEB J; 1998 May; 12(7):541-52. PubMed ID: 9576481
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer's disease.
    Guo H; Albrecht S; Bourdeau M; Petzke T; Bergeron C; LeBlanc AC
    Am J Pathol; 2004 Aug; 165(2):523-31. PubMed ID: 15277226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics.
    Di Domenico F; Barone E; Perluigi M; Butterfield DA
    Antioxid Redox Signal; 2017 Mar; 26(8):364-387. PubMed ID: 27626216
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zinc and cadmium specifically interfere with RNA-binding activity of human iron regulatory protein 1.
    Martelli A; Moulis JM
    J Inorg Biochem; 2004 Aug; 98(8):1413-20. PubMed ID: 15271519
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diacerhein blocks iron regulatory protein activation in inflamed human monocytes.
    Pietrangelo A; Montosi G; Recalcati S; Garuti C; Cairo G
    Life Sci; 1998; 63(14):PL213-9. PubMed ID: 9771919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic and biochemical markers in patients with Alzheimer's disease support a concerted systemic iron homeostasis dysregulation.
    Crespo ÂC; Silva B; Marques L; Marcelino E; Maruta C; Costa S; Timóteo A; Vilares A; Couto FS; Faustino P; Correia AP; Verdelho A; Porto G; Guerreiro M; Herrero A; Costa C; de Mendonça A; Costa L; Martins M
    Neurobiol Aging; 2014 Apr; 35(4):777-85. PubMed ID: 24199959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitric oxide and peroxynitrite-dependent aconitase inactivation and iron-regulatory protein-1 activation in mammalian fibroblasts.
    Castro LA; Robalinho RL; Cayota A; Meneghini R; Radi R
    Arch Biochem Biophys; 1998 Nov; 359(2):215-24. PubMed ID: 9808763
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Haem precursor delta-aminolaevulinic acid induces activation of the cytosolic iron regulatory protein 1.
    Carvalho H; Bechara EJ; Meneghini R; Demasi M
    Biochem J; 1997 Dec; 328 ( Pt 3)(Pt 3):827-32. PubMed ID: 9396727
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxalomalate, a competitive inhibitor of aconitase, modulates the RNA-binding activity of iron-regulatory proteins.
    Festa M; Colonna A; Pietropaolo C; Ruffo A
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):315-20. PubMed ID: 10816424
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer's disease.
    Kowall NW; Kosik KS
    Ann Neurol; 1987 Nov; 22(5):639-43. PubMed ID: 3122646
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Iron, lactoferrin and iron regulatory protein activity in the synovium; relative importance of iron loading and the inflammatory response.
    Guillén C; McInnes IB; Kruger H; Brock JH
    Ann Rheum Dis; 1998 May; 57(5):309-14. PubMed ID: 9741316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression and biochemical characterization of iron regulatory proteins 1 and 2 in Saccharomyces cerevisiae.
    Phillips JD; Guo B; Yu Y; Brown FM; Leibold EA
    Biochemistry; 1996 Dec; 35(49):15704-14. PubMed ID: 8961933
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Introduction-serial review: iron and cellular redox status.
    Comporti M
    Free Radic Biol Med; 2002 Apr; 32(7):565-7. PubMed ID: 11909690
    [No Abstract]   [Full Text] [Related]  

  • 57. Oxidative stress and iron imbalance in Alzheimer disease: how rust became the fuss!
    Smith MA
    J Alzheimers Dis; 2006; 9(3 Suppl):305-8. PubMed ID: 16914868
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy, oxidative damage, and Alzheimer's disease: clues to the underlying puzzle.
    Beal MF
    Neurobiol Aging; 1994; 15 Suppl 2():S171-4. PubMed ID: 7700446
    [No Abstract]   [Full Text] [Related]  

  • 59. Iron homeostasis, oxidative stress, and DNA damage.
    Meneghini R
    Free Radic Biol Med; 1997; 23(5):783-92. PubMed ID: 9296456
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives.
    Bhole RP; Chikhale RV; Rathi KM
    IBRO Neurosci Rep; 2024 Jun; 16():8-42. PubMed ID: 38169888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.